scholarly journals Current treatment modalities for dry eye disease

2021 ◽  
Vol 21 (1) ◽  
pp. 18-23
Author(s):  
E.B. Tatarnikova ◽  
◽  
O.I. Krivosheina ◽  

For many years, dry eye disease (DED) is a common ophthalmic condition associated with ocular surface damage and loss of homeostasis of the tear film. The key pathogenic factors of DED are tear film instability and tear hyperosmolarity, ocular surface inflammation and damage, and neurosensory alterations. Current treatment for DED consists of non-medical therapies, tear substitutes, anti-inflammatory agents, and surgical procedures. These treatments improve disease course and quality of life. However, these treatments are largely palliative as long-term (and even life-long) installation of eye drops is required. Modern and effective treatments for DED are needed. This paper reviews domestic and foreign published data on the important therapies for DED and novel tools to promote symptom relief. These data are required for the understanding of the pharmacological effects of various drug classes prescribed for DED and early treatment initiation. Keywords: dry eye disease, tear replacement therapy, anti-inflammatory treatment, surgery, hyaluronic acid, preservatives. For citation: Tatarnikova E.B., Krivosheina O.I. Current treatment modalities for dry eye disease. Russian Journal of Clinical Ophthalmology. 2021;21(1):18–23. DOI: 10.32364/2311-7729-2021-21-1-18-23.

2021 ◽  
Vol 13 ◽  
pp. 251584142110127
Author(s):  
Preeya K. Gupta ◽  
Nandini Venkateswaran

The tear film, which includes mucins that adhere to foreign particles, rapidly clears allergens and pathogens from the ocular surface, protecting the underlying tissues. However, the tear film’s ability to efficiently remove foreign particles during blinking can also pose challenges for topical drug delivery, as traditional eye drops (solutions and suspensions) are cleared from the ocular surface before the drug can penetrate into the conjunctival and corneal epithelium. In the past 15 years, there has been an increase in the development of nanoparticles with specialized coatings that have reduced affinity to mucins and are small enough in size to pass through the mucus barrier. These mucus-penetrating particles (MPPs) have been shown to efficiently penetrate the mucus barrier and reach the ocular surface tissues. Dry eye disease (DED) is a common inflammatory ocular surface disorder that often presents with periodic flares (exacerbations). However, currently approved immunomodulatory treatments for DED are intended for long-term use. Thus, there is a need for effective short-term treatments that can address intermittent flares of DED. Loteprednol etabonate, an ocular corticosteroid, was engineered to break down rapidly after administration to the ocular surface tissues and thereby reduce risks associated with other topical steroids. KPI-121 is an ophthalmic suspension that uses the MPP technology to deliver loteprednol etabonate more efficiently to the ocular tissues, achieving in animal models a 3.6-fold greater penetration of loteprednol etabonate to the cornea than traditional loteprednol etabonate ophthalmic suspensions. In clinical trials, short-term treatment with KPI-121 0.25% significantly reduced signs and symptoms of DED compared with its vehicle (placebo). Recently approved KPI-121 0.25%, with its novel drug delivery design and ease of use, has the potential to effectively treat periodic flares of DED experienced by many patients.


2021 ◽  
Vol 22 (1) ◽  
pp. 422
Author(s):  
Ming-Tse Kuo ◽  
Po-Chiung Fang ◽  
Shu-Fang Kuo ◽  
Alexander Chen ◽  
Yu-Ting Huang

Most studies about dry eye disease (DED) chose unilateral eye for investigation and drew conclusions based on monocular results, whereas most studies involving tear proteomics were based on the results of pooling tears from a group of DED patients. Patients with DED were consecutively enrolled for binocular clinical tests, tear biochemical markers of DED, and tear proteome. We found that bilateral eyes of DED patients may have similar but different ocular surface performance and tear proteome. Most ocular surface homeostatic markers and tear biomarkers were not significantly different in the bilateral eyes of DED subjects, and most clinical parameters and tear biomarkers were correlated significantly between bilateral eyes. However, discrepant binocular presentation in the markers of ocular surface homeostasis and the associations with tear proteins suggested that one eye’s performance cannot represent that of the other eye or both eyes. Therefore, in studies for elucidating tear film homeostasis of DED, we may lose some important messages hidden in the fellow eye if we collected clinical and proteomic data only from a unilateral eye. For mechanistic studies, it is recommended that researchers collect tear samples from the eye with more severe DED under sensitive criteria for identifying the more severe eye and evaluating the tear biochemical and proteomic markers with binocular concordance drawn in prior binocular studies.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Miraf Sahlu ◽  
Abeba T. Giorgis

Abstract Background Dry eye disease is a multifactorial disease; causing various ocular symptoms with potential damage to the ocular surface. Applying hypotensive eye drops are presumed to initiate or exacerbate existing dry eye disease. The purpose of this study was to determine the frequency of signs and symptoms and severity of dry eye disease among glaucoma patients on topical hypotensive medications and controls. Methods A cross-sectional comparative study, involving 320 glaucoma patients and controls. Ocular Surface Disease Index (OSDI) symptoms score and Schirmer, tear breakup time and corneal staining tests were used to assess dry eye disease. Data was analyzed using SPSS version 24 software; p-value less than 0.05 was considered as statistically significant. Results Among the 160 study glaucoma patients, the mean duration of topical hypotensive medication use was 5.2 ± 5.21 years (range, 4 months - 32 years). Mild to severe level of OSDI score was found in 122 (76%) glaucoma patients and in 137 (86%) controls (p = 0.033). Mild to sever abnormal clinical tests in the glaucoma patients and control, respectively, were 106 (66%) vs 80 (50%) corneal staining (p = 0.045), 79 (49%) vs 72 (45%) TBUT (p = 0.021), and 91 (57%) vs 83 (52%) Schirmer test (p = 0.242). Test results at the level of sever: 2 (1%) vs 0 (0%) corneal staining, 50 (31%) vs 39 (24%) TBUT and 65 (41%) vs 60 (38%) Schirmer test in the glaucoma patents and controls, respectively. Corneal staining and TBUT had correlation with the number of drugs (p = 0.004 and 0.031, respectively), and more relationship of the two tests with total number of drops applied per day (p = 0.01 and p <  0.001, respectively). Patients on pilocarpine and timolol had more corneal staining and lower TBUT [(p = 0.011 and p <  0.001) and (p = 0.04 and 0.012), respectively]. Conclusions The study has identified glaucoma patients to be more affected by dry eye disease than non-glaucoma patients, and presence of significantly lower TBUT and higher corneal staining in the glaucoma patients on multidrops and multidose per day. We recommend consideration of evaluation and management of DED for glaucoma patients on multidrops and multidose hypotensive medications.


BMJ Open ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. e048479
Author(s):  
Passara Jongkhajornpong ◽  
Pawin Numthavaj ◽  
Thunyarat Anothaisintawee ◽  
Kaevalin Lekhanont ◽  
Gareth McKay ◽  
...  

IntroductionDry eye disease (DED) is a common eye problem. Although the disease is not fatal, it substantially reduces quality of life and creates a high economic burden, especially in patients with moderate-to-severe DED. Several biological tear substitutes (eg, autologous serum (AS), autologous platelet-rich plasma (APRP) and autologous platelet lysate) could effectively improve dry eyes. However, evidence on their comparative efficacy is controversial. This study aims to compare the efficacy of 100% APRP with 100% AS eye drops in patients with moderate-to-severe DED.Methods and analysisThe study is a single-centre, double-blinded randomised, parallel, non-inferiority trial. One hundred and thirty patients with moderate-to-severe DED, aged 18–70 years will be recruited from outpatient clinic, Department of Ophthalmology, Ramathibodi Hospital, Bangkok from February 2021 to January 2023. Patients will be randomised to receive either 100% APRP or 100% AS eye drops (1:1 ratio) for 4 weeks. The primary outcomes are ocular surface disease index (OSDI) and ocular surface staining (OSS) evaluated using the Oxford scale. Secondary outcomes are fluorescein break-up time, Schirmer’s I test, meibomian gland parameters and adverse events. Other measured outcomes include best-corrected visual acuity, intraocular pressure and compliance.Ethics and disseminationThe study protocol and any supplements used in conducting this trial have been approved by the Ethics Committee of Faculty of Medicine, Ramathibodi Hospital, Mahidol University (MURA2020/1930). Informed consent will be obtained from all patients before study entry. Results will be presented in peer-reviewed journals and international conferences.Trial registration numberNCT04683796.


2016 ◽  
Vol 2016 ◽  
pp. 1-8 ◽  
Author(s):  
Mária Budai-Szűcs ◽  
Gabriella Horvát ◽  
Barnabás Áron Szilágyi ◽  
Benjámin Gyarmati ◽  
András Szilágyi ◽  
...  

Dry eye disease is a relatively common ocular problem, which causes eye discomfort and visual disorders leading to a decrease in the quality of life. The aim of this study was to find a possible excipient for eye drop formulations, which is able to stabilize the tear film. A cationic thiolated polyaspartamide polymer, poly[(N-mercaptoethylaspartamide)-co-(N-(N′,N′-dimethylaminoethyl)aspartamide)] (ThioPASP-DME), was used as a potential vehicle. Besides satisfying the basic requirements, the chemical structure of ThioPASP-DME is similar to those of ocular mucins as it is a protein-like polymer bearing a considerable number of thiol groups. The solution of the polymer is therefore able to mimic the physiological properties of the mucins and it can interact with the mucus layer via disulphide bond formation. The resultant mucoadhesion provides a prolonged residence time and ensures protective effect for the corneal/conjunctival epithelium. ThioPASP-DME also has an antioxidant effect due to the presence of the thiol groups. The applicability of ThioPASP-DME as a potential excipient in eye drops was determined by means of ocular compatibility tests and through examinations of the interactions with the mucosal surface. The results indicate that ThioPASP-DME can serve as a potential eye drop excipient for the therapy of dry eye disease.


2019 ◽  
Vol 17 ◽  
pp. 205873921881868
Author(s):  
Limei Liu ◽  
Dongdong Wei ◽  
Hongkun Xu ◽  
Changhui Liu

To study the effects of apigenin on dry eye disease (DED) in rats. Rats were divided into six groups: (I) normal control group, (II) DED control group, (III) vehicle control group, (IV) DED + apigenin 10 mg/kg, (V) DED + apigenin 20 mg/kg, and (VI) DED + apigenin 50 mg/kg. Schirmer test, tear film break-up time (BUT), and corneal fluorescein staining were used to evaluate the effects of apigenin on the ocular surface. The related inflammatory cytokines were detected by enzyme-linked immunosorbent assay (ELISA). Histopathological examination and inflammatory index were also performed. The results showed that administration of apigenin was shown a significant effect on the recovery of ocular surface function. Compared to the control group, apigenin treatment in DED rats significantly decreased the level of the tumor necrosis factor-alpha (TNF-α), interleukin-1β (IL-1β), and interleukin-6 (IL-6); however, the interleukin-10 (IL-10) level was increased. Histopathological examination further verified the anti-inflammatory effects of apigenin on DED rats. The results demonstrated that apigenin could protect DED rats via inhibition of inflammation, suggesting that it may have potential as a therapy for DED.


2013 ◽  
Vol 2013 ◽  
pp. 1-6 ◽  
Author(s):  
Snježana Kaštelan ◽  
Martina Tomić ◽  
Jasminka Salopek-Rabatić ◽  
Branko Novak

Dry eye disease or dysfunctional tear syndrome is among the most frequent diagnoses in ophthalmology. It is a multifactorial disease of the ocular surface and tear film which results in ocular discomfort, visual disturbances, and tear instability with potential damage to the cornea and conjunctiva. Risk factors for dry eye syndrome include age, sex (female gender), race, contact lens wear, environment with low humidity, systemic medications, and autoimmune disorders. The aim of this paper is to present the systematic classification, epidemiology, diagnostic procedures, and advances in the management of dry eye disease. The recent improvements in comprehending the underlying etiologic factors will inevitably improve future classifications and diagnostic abilities leading to more effective therapeutic options. Treatment of this highly prevalent condition can drastically improve the quality of life of individuals and prevent damage to the ocular surface.


2011 ◽  
Vol 37 (1) ◽  
pp. 12-17 ◽  
Author(s):  
Won Choi ◽  
Zhengri Li ◽  
Han-Jin Oh ◽  
Seong-Kyu Im ◽  
Seung-Hyun Lee ◽  
...  

Author(s):  
Dorota Kopacz ◽  
Łucja Niezgoda ◽  
Ewa Fudalej ◽  
Anna Nowak ◽  
Piotr Maciejewicz

The tear film is a thin fluid layer covering the ocular surface. It is responsible for ocular surface comfort, mechanical, environmental and immune protection, epithelial health and it forms smooth refractive surface for vision. The traditional description of the tear film divides it into three layers: lipid, aqueous and mucin. The role of each layer depends on the composition of it. Tear production, evaporation, absorption and drainage concur to dynamic balance of the tear film and leads to its integrity and stability. Nonetheless, this stability can be disturb in tear film layers deficiencies, defective spreading of the tear film, in some general diseases and during application of some general and/or topical medications. Dry eye disease is the result of it. In this review not only physiology of the tear film is presented. Moreover, we would like to discuss the influence of various diseases and conditions on the tear film and contrarily, spotlight tear film disorders as a manifestation of those diseases.


Sign in / Sign up

Export Citation Format

Share Document