Comparison of gridded temperature dataset of IMD and Sheffield over India

2021 ◽  
pp. 285-293
Author(s):  
Anurag Sharma ◽  
Deepak Swami ◽  
Nitin Joshi

Climate modelling and prediction studies play crucial role in identifying suitable mitigation techniques to minimize or avoid adverse consequences of climate extremes. The accurate spatially and temporally distributed temperature and rainfall dataset are key components in climate prediction studies. Reanalysis datasets provide better spatial and temporal coverage than observational datasets; therefore, reanalysis datasets are widely used for global and regional studies. However, before using the reanalysis dataset in climate modelling studies, it is crucial to compare the robustness and accuracy of the reanalysis dataset with the observational dataset. In this study, daily gridded maximum and minimum temperature datasets of Indian Meteorological Department (IMD) (1°?×?1°) and Sheffield (0.25°×0.25°) are compared using 62-years data i.e 1951-2012. The comparison is based on differences in spatial distribution pattern, probability distribution functions plots and box-plots of the respective gridded dataset. The spatial distribution of grid-wise averaged maximum and minimum temperature dataset generally compare well across pan India in both IMD and Sheffield; however, the significant differences are observed over western Himalaya (WH) and northeast (NE) region. The probability distribution of the pooled mean minimum temperature dataset of IMD is found significantly different from Sheffield using the two-sample Kolmogorov-Smirnov (KS) test. This study will be helpful for researchers who are planning to use Sheffield gridded temperature dataset for climate modelling studies.

2005 ◽  
Vol 18 (21) ◽  
pp. 4344-4354 ◽  
Author(s):  
Christopher A. T. Ferro ◽  
Abdelwaheb Hannachi ◽  
David B. Stephenson

Abstract Anthropogenic influences are expected to cause the probability distribution of weather variables to change in nontrivial ways. This study presents simple nonparametric methods for exploring and comparing differences in pairs of probability distribution functions. The methods are based on quantiles and allow changes in all parts of the probability distribution to be investigated, including the extreme tails. Adjusted quantiles are used to investigate whether changes are simply due to shifts in location (e.g., mean) and/or scale (e.g., variance). Sampling uncertainty in the quantile differences is assessed using simultaneous confidence intervals calculated using a bootstrap resampling method that takes account of serial (intraseasonal) dependency. The methods are simple enough to be used on large gridded datasets. They are demonstrated here by exploring the changes between European regional climate model simulations of daily minimum temperature and precipitation totals for winters in 1961–90 and 2071–2100. Projected changes in daily precipitation are generally found to be well described by simple increases in scale, whereas minimum temperature exhibits changes in both location and scale.


2020 ◽  
Vol 501 (1) ◽  
pp. 994-1001
Author(s):  
Suman Sarkar ◽  
Biswajit Pandey ◽  
Snehasish Bhattacharjee

ABSTRACT We use an information theoretic framework to analyse data from the Galaxy Zoo 2 project and study if there are any statistically significant correlations between the presence of bars in spiral galaxies and their environment. We measure the mutual information between the barredness of galaxies and their environments in a volume limited sample (Mr ≤ −21) and compare it with the same in data sets where (i) the bar/unbar classifications are randomized and (ii) the spatial distribution of galaxies are shuffled on different length scales. We assess the statistical significance of the differences in the mutual information using a t-test and find that both randomization of morphological classifications and shuffling of spatial distribution do not alter the mutual information in a statistically significant way. The non-zero mutual information between the barredness and environment arises due to the finite and discrete nature of the data set that can be entirely explained by mock Poisson distributions. We also separately compare the cumulative distribution functions of the barred and unbarred galaxies as a function of their local density. Using a Kolmogorov–Smirnov test, we find that the null hypothesis cannot be rejected even at $75{{\ \rm per\ cent}}$ confidence level. Our analysis indicates that environments do not play a significant role in the formation of a bar, which is largely determined by the internal processes of the host galaxy.


1997 ◽  
Vol 78 (10) ◽  
pp. 1904-1907 ◽  
Author(s):  
Weinan E ◽  
Konstantin Khanin ◽  
Alexandre Mazel ◽  
Yakov Sinai

Mathematics ◽  
2021 ◽  
Vol 9 (10) ◽  
pp. 1085
Author(s):  
Ilya E. Tarasov

This article discusses the application of the method of approximation of experimental data by functional dependencies, which uses a probabilistic assessment of the deviation of the assumed dependence from experimental data. The application of this method involves the introduction of an independent parameter “scale of the error probability distribution function” and allows one to synthesize the deviation functions, forming spaces with a nonlinear metric, based on the existing assumptions about the sources of errors and noise. The existing method of regression analysis can be obtained from the considered method as a special case. The article examines examples of analysis of experimental data and shows the high resistance of the method to the appearance of single outliers in the sample under study. Since the introduction of an independent parameter increases the number of computations, for the practical application of the method in measuring and information systems, the architecture of a specialized computing device of the “system on a chip” class and practical approaches to its implementation based on programmable logic integrated circuits are considered.


2021 ◽  
Author(s):  
Hamed Farhadi ◽  
Manousos Valyrakis

<p>Applying an instrumented particle [1-3], the probability density functions of kinetic energy of a coarse particle (at different solid densities) mobilised over a range of above threshold flow conditions conditions corresponding to the intermittent transport regime, were explored. The experiments were conducted in the Water Engineering Lab at the University of Glasgow on a tilting recirculating flume with 800 (length) × 90 (width) cm dimension. Twelve different flow conditions corresponding to intermittent transport regime for the range of particle densities examined herein, have been implemented in this research. Ensuring fully developed flow conditions, the start of the test section was located at 3.2 meters upstream of the flume outlet. The bed surface of the flume is flat and made up of well-packed glass beads of 16.2 mm diameter, offering a uniform roughness over which the instrumented particle is transported. MEMS sensors are embedded within the instrumented particle with 3-axis gyroscope and 3-axis accelerometer. At the beginning of each experimental run, instrumented particle is placed at the upstream of the test section, fully exposed to the free stream flow. Its motion is recorded with top and side cameras to enable a deeper understanding of particle transport processes. Using results from sets of instrumented particle transport experiments with varying flow rates and particle densities, the probability distribution functions (PDFs) of the instrumented particles kinetic energy, were generated. The best-fitted PDFs were selected by applying the Kolmogorov-Smirnov test and the results were discussed considering the light of the recent literature of the particle velocity distributions.</p><p>[1] Valyrakis, M.; Alexakis, A. Development of a “smart-pebble” for tracking sediment transport. In Proceedings of the International Conference on Fluvial Hydraulics (River Flow 2016), St. Louis, MO, USA, 12–15 July 2016.</p><p>[2] Al-Obaidi, K., Xu, Y. & Valyrakis, M. 2020, The Design and Calibration of Instrumented Particles for Assessing Water Infrastructure Hazards, Journal of Sensors and Actuator Networks, vol. 9, no. 3, 36.</p><p>[3] Al-Obaidi, K. & Valyrakis, M. 2020, Asensory instrumented particle for environmental monitoring applications: development and calibration, IEEE sensors journal (accepted).</p>


Author(s):  
D. Xue ◽  
S. Y. Cheing ◽  
P. Gu

This research introduces a new systematic approach to identify the optimal design configuration and attributes to minimize the potential construction project changes. The second part of this paper focuses on the attribute design aspect. In this research, the potential changes of design attribute values are modeled by probability distribution functions. Attribute values of the design whose construction tasks are least sensitive to the changes of these attribute values are identified based upon Taguchi Method. In addition, estimation of the potential project change cost due to the potential design attribute value changes is also discussed. Case studies in pipeline engineering design and construction have been conducted to show the effectiveness of the introduced approach.


2015 ◽  
Vol 19 (sup8) ◽  
pp. S8-32-S8-37 ◽  
Author(s):  
K. Deng ◽  
J. Deng ◽  
T. Sun ◽  
Y. Guan ◽  
F. Yang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document