A Mathematical Method for Determining the Parameters of Functional Dependencies Using Multiscale Probability Distribution Functions
This article discusses the application of the method of approximation of experimental data by functional dependencies, which uses a probabilistic assessment of the deviation of the assumed dependence from experimental data. The application of this method involves the introduction of an independent parameter “scale of the error probability distribution function” and allows one to synthesize the deviation functions, forming spaces with a nonlinear metric, based on the existing assumptions about the sources of errors and noise. The existing method of regression analysis can be obtained from the considered method as a special case. The article examines examples of analysis of experimental data and shows the high resistance of the method to the appearance of single outliers in the sample under study. Since the introduction of an independent parameter increases the number of computations, for the practical application of the method in measuring and information systems, the architecture of a specialized computing device of the “system on a chip” class and practical approaches to its implementation based on programmable logic integrated circuits are considered.