scholarly journals Changes in Soil Carbon Sequestration during Woody Plant Encroachment in Arid Ecosystems

2021 ◽  
Vol 4 (4-5) ◽  
pp. 266-276
Author(s):  
Pratap Naikwade

Carbon sequestration is one of the most important and highly recommended measures for mitigating climate change. Soil organic carbon (SOC) has potential to sequester the largest amount of carbon (C) for the longest time period in the midst of the organic C sinks in terrestrial ecosystems of the earth. In recent years, apprehension of the role of soils as sink for carbon on a wide-ranging scale has become dynamic. From last 150 years, encroachment of trees and shrubs into grasslands and the ‘thicketization’ of savannas have been reported and is a global phenomenon. One possibly beneficial effect could be that the shrub and tree-dominated ecosystems will sequester more carbon and will be a buffer for elevated atmospheric carbon dioxide (CO2) levels. The question of what is impact of woody encroachment on soil carbon balance of an ecosystem has proved difficult to answer, and the results remain debatable. The magnitude and pattern of changes in the SOC with woody encroachment are exceedingly abstruse and varies from significant increases, to significant decreases to no net change in SOC. Impact of wood plant encroachment on carbon sequestration is discussed in this paper considering various studies with different results so it will lead to better understanding of the complex phenomenon. SOC sequestration is effective greenhouse gas mitigation strategy and a vital ecosystem service. Increasing SOC may helpful to mitigate negative effects of growing concentration of CO2 in atmosphere and may be advantageous in decelerating or reversal in global climate change rate.

Author(s):  
Manish Kumar Goyal ◽  
Irom Royal

The gaseous composition of our earth's atmosphere has changed drastically in recent years. This has resulted in unprecedented global warming, hydrological variation, and various climate change impacts in different places of the world. Mitigation and adaptive strategies of climate change through soil carbon sequestration technique is emerged as an alternative option. Among the different types of soil, forest soil has the highest potential to sequester atmospheric carbon because of its rich ecology. However, human-induced deforestation activities and traditional methods of cultivation perturb the soil of organic carbon. Therefore, it is essential to understand the various influencing factors and subsequently the improvement of existing ecosystem for the mitigation of global climate change to some extent. Studies and innovative research on agroforestry, including soil carbon sequestration at regional level, will be a better choice for improvement of environment, food security, and climate change.


2017 ◽  
pp. 188-212 ◽  
Author(s):  
Manish Kumar Goyal ◽  
Irom Royal

The gaseous composition of our earth's atmosphere has changed drastically in recent years. This has resulted in unprecedented global warming, hydrological variation, and various climate change impacts in different places of the world. Mitigation and adaptive strategies of climate change through soil carbon sequestration technique is emerged as an alternative option. Among the different types of soil, forest soil has the highest potential to sequester atmospheric carbon because of its rich ecology. However, human-induced deforestation activities and traditional methods of cultivation perturb the soil of organic carbon. Therefore, it is essential to understand the various influencing factors and subsequently the improvement of existing ecosystem for the mitigation of global climate change to some extent. Studies and innovative research on agroforestry, including soil carbon sequestration at regional level, will be a better choice for improvement of environment, food security, and climate change.


2017 ◽  
Vol 5 (2) ◽  
pp. 132-140 ◽  
Author(s):  
Kewat Sanjay Kumar ◽  

Mechanisms governing carbon stabilization in soils have received a great deal of attention in recent years due to their relevance in the global carbon cycle. Two thirds of the global terrestrial organic C stocks in ecosystems are stored in below ground components as terrestrial carbon pools in soils. Furthermore, mean residence time of soil organic carbon pools have slowest turnover rates in terrestrial ecosystems and thus there is vast potential to sequester atmospheric CO2 in soil ecosystems. Depending upon soil management practices it can be served as source or sink for atmospheric CO2. Sustainable management systems and practices such as conservation agriculture, agroforestry and application of biochar are emerging and promising tools for soil carbon sequestration. Increasing soil carbon storage in a system simultaneously improves the soil health by increase in infiltration rate, soil biota and fertility, nutrient cycling and decrease in soil erosion process, soil compaction and C emissions. Henceforth, it is vital to scientifically explore the mechanisms governing C flux in soils which is poorly understood in different ecosystems under anthropogenic interventions making soil as a potential sink for atmospheric CO2 to mitigate climate change. Henceforth, present paper aims to review basic mechanism governing carbon stabilization in soils and new practices and technological developments in agricultural and forest sciences for C sequestration in terrestrial soil ecosystems.


2021 ◽  
Vol 2 (1) ◽  
Author(s):  
Yuhao Feng ◽  
Haojie Su ◽  
Zhiyao Tang ◽  
Shaopeng Wang ◽  
Xia Zhao ◽  
...  

AbstractGlobal climate change likely alters the structure and function of vegetation and the stability of terrestrial ecosystems. It is therefore important to assess the factors controlling ecosystem resilience from local to global scales. Here we assess terrestrial vegetation resilience over the past 35 years using early warning indicators calculated from normalized difference vegetation index data. On a local scale we find that climate change reduced the resilience of ecosystems in 64.5% of the global terrestrial vegetated area. Temperature had a greater influence on vegetation resilience than precipitation, while climate mean state had a greater influence than climate variability. However, there is no evidence for decreased ecological resilience on larger scales. Instead, climate warming increased spatial asynchrony of vegetation which buffered the global-scale impacts on resilience. We suggest that the response of terrestrial ecosystem resilience to global climate change is scale-dependent and influenced by spatial asynchrony on the global scale.


2021 ◽  
Author(s):  
Franziska Lechleitner ◽  
Christopher C. Day ◽  
Oliver Kost ◽  
Micah Wilhelm ◽  
Negar Haghipour ◽  
...  

<p>Terrestrial ecosystems are intimately linked with the global climate system, but their response to ongoing and future anthropogenic climate change remains poorly understood. Reconstructing the response of terrestrial ecosystem processes over past periods of rapid and substantial climate change can serve as a tool to better constrain the sensitivity in the ecosystem-climate response.</p><p>In this talk, we will present a new reconstruction of soil respiration in the temperate region of Western Europe based on speleothem carbon isotopes (δ<sup>13</sup>C). Soil respiration remains poorly constrained over past climatic transitions, but is critical for understanding the global carbon cycle and its response to ongoing anthropogenic warming. Our study builds upon two decades of speleothem research in Western Europe, which has shown clear correlation between δ<sup>13</sup>C and regional temperature reconstructions during the last glacial and the deglaciation, with exceptional regional coherency in timing, amplitude, and absolute δ<sup>13</sup>C variation. By combining innovative multi-proxy geochemical analysis (δ<sup>13</sup>C, Ca isotopes, and radiocarbon) on three speleothems from Northern Spain, and quantitative forward modelling of processes in soil, karst, and cave, we show how deglacial variability in speleothem δ<sup>13</sup>C is best explained by increasing soil respiration. Our study is the first to quantify and remove the effects of prior calcite precipitation (PCP, using Ca isotopes) and bedrock dissolution (open vs closed system, using the radiocarbon reservoir effect) from the speleothem δ<sup>13</sup>C signal to derive changes in respired δ<sup>13</sup>C over time. Our approach allows us to estimate the temperature sensitivity of soil respiration (Q<sub>10</sub>), which is higher than current measurements, suggesting that part of the speleothem signal may be related to a change in the composition of the soil respired δ<sup>13</sup>C. This is likely related to changing substrate through increasing contribution from vegetation biomass with the onset of the Holocene.</p><p>These results highlight the exciting possibilities speleothems offer as a coupled archive for quantitative proxy-based reconstructions of climate and ecosystem conditions.</p>


2019 ◽  
Vol 147 (1) ◽  
pp. 99-107 ◽  
Author(s):  
Tobias Rütting ◽  
Mark J. Hovenden

AbstractIncreases in atmospheric carbon dioxide (CO2) and global air temperature affect all terrestrial ecosystems and often lead to enhanced ecosystem productivity, which in turn dampens the rise in atmospheric CO2 by removing CO2 from the atmosphere. As most terrestrial ecosystems are limited in their productivity by the availability of nitrogen (N), there is concern about the persistence of this terrestrial carbon sink, as these ecosystems might develop a progressive N limitation (PNL). An increase in the gross soil N turnover may alleviate PNL, as more mineral N is made available for plant uptake. So far, climate change experiments have mainly manipulated one climatic factor only, but there is evidence that single-factor experiments usually overestimate the effects of climate change on terrestrial ecosystems. In this study, we investigated how simultaneous, decadal-long increases in CO2 and temperature affect the soil gross N dynamics in a native Tasmanian grassland under C3 and C4 vegetation. Our laboratory 15N labeling experiment showed that average gross N mineralization ranged from 4.9 to 11.3 µg N g−1 day−1 across the treatment combinations, while gross nitrification was about ten-times lower. Considering all treatment combinations, no significant effect of climatic treatments or vegetation type (C3 versus C4 grasses) on soil N cycling was observed.


2011 ◽  
Vol 62 (9) ◽  
pp. 984 ◽  
Author(s):  
Janice M. Lough ◽  
Alistair J. Hobday

The consequences of human activities increasing concentrations of atmospheric greenhouse gases are already being felt in marine and terrestrial environments. More energy has been trapped in the global climate system, resulting in warming of land and sea temperatures. About 30% of the extra atmospheric carbon dioxide has been absorbed by the oceans, increasing their acidity. Thermal expansion and some melting of land-based ice have caused sea level to rise. Significant climate changes have now been observed across Australia and its coastal seas. The clearest signal is the warming of air and sea temperatures and the rates of warming have accelerated since the mid-20th century. Ocean warming has been higher than the global average around Australia, especially off south-eastern Australia. Changes in Australia’s hydrological regime are more difficult to differentiate from the high natural inter-annual variability. Recent trends towards drier winters in south-western Western Australia and part of southern Australia appear, however, to be largely attributable to human-induced climate change. Even without significant changes in average rainfall, warmer temperatures increase evaporative losses, enhance the intensity of recent droughts and reduce river flows. Sustained and coordinated monitoring of the physical environment, especially lacking for Australia’s freshwater ecosystems, is important to assess the magnitude and biological consequences of ongoing changes.


Sign in / Sign up

Export Citation Format

Share Document