Non-stationary dynamic system characteristics recovery from three test signals

2020 ◽  
pp. 9-15
Author(s):  
Ilia V. Boikov ◽  
Nikolay P. Krivulin

Algorithms of exact restoration in an analytical form of dynamic characteristics of non-stationary dynamic systems are constructed. Non-stationary continuous dynamical systems modeled by Volterra integral equations of the first kind and non-stationary discrete dynamical systems modeled by discrete analogues of Volterra integral equations of the first kind are considered.The article consists of an introduction and three sections: 1) The exact restoration of the dynamic characteristics of continuous systems, 2) The restoration of the transition characteristics of discrete systems, 3) Conclusions. The introduction provides a statement of the problem and provides an overview of dynamical systems for which algorithms for exact reconstruction in ananalytical form of the impulse response (in the case of continuous systems) and the transition characteristic (in the case of discrete systems) are constructed. In the first section, the algorithm is constructed for the exact reconstruction of the impulse response of an non-stationary continuous dynamic system from three interconnected input signals. The first signal may be arbitrary, the second and third signals are associated with the first signal by integral operator. The exact formula for the Laplace transform of the impulse response, represented by an algebraic expression from the Laplace transform of the system output signals, is given. A model example illustrating the effectiveness of the algorithm is given. The practical application of the presented algorithm isdiscussed. In the second section, an algorithm is constructed for the exact reconstruction of the transition response of a non-stationary discrete dynamical system from three input signals that are interconnected. The first signal may be arbitrary, the second and third signals are associated with the first summing operator. The exact formula of the Z-transform of the transition characteristic is presented, which is represented by an algebraic expression from the Z-transform of the system output signals. A model example is given. The “Conclusions” section provides a summary of the results presented in the article and describes the dynamic systems to which the proposed algorithms can be extended.

Entropy ◽  
2021 ◽  
Vol 23 (5) ◽  
pp. 616
Author(s):  
Marek Berezowski ◽  
Marcin Lawnik

Research using chaos theory allows for a better understanding of many phenomena modeled by means of dynamical systems. The appearance of chaos in a given process can lead to very negative effects, e.g., in the construction of bridges or in systems based on chemical reactors. This problem is important, especially when in a given dynamic process there are so-called hidden attractors. In the scientific literature, we can find many works that deal with this issue from both the theoretical and practical points of view. The vast majority of these works concern multidimensional continuous systems. Our work shows these attractors in discrete systems. They can occur in Newton’s recursion and in numerical integration.


1996 ◽  
Vol 06 (07) ◽  
pp. 1281-1293 ◽  
Author(s):  
FENGSHAN BAI ◽  
GABRIEL J. LORD ◽  
ALASTAIR SPENCE

The aim of this paper is to present a numerical technique for the computation of connections between periodic orbits in nonautonomous and autonomous systems of ordinary differential equations. First, the existence and computation of connecting orbits between fixed points in discrete dynamical systems is discussed; then it is shown that the problem of finding connections between equilibria and periodic solutions in continuous systems may be reduced to finding connections between fixed points in a discrete system. Implementation of the method is considered: the choice of a linear solver is discussed and phase conditions are suggested for the discrete system. The paper concludes with some numerical examples: connections for equilibria and periodic orbits are computed for discrete systems and for nonautonomous and autonomous systems, including systems arising from the discretization of a partial differential equation.


2004 ◽  
Vol 14 (10) ◽  
pp. 3519-3539 ◽  
Author(s):  
YING-CHENG LAI ◽  
ZONGHUA LIU ◽  
ARJE NACHMAN ◽  
LIQIANG ZHU

To suppress undesirable noise (jamming) associated with signals is important for many applications. Here we explore the idea of jamming suppression with realistic, aperiodic signals by stochastic resonance. In particular, we consider weak amplitude-modulated (AM), frequency-modulated (FM), and chaotic signals with strong, broad-band or narrow-band jamming, and show that aperiodic stochastic resonance occurring in an array of excitable dynamical systems can be effective to counter jamming. We provide formulas for quantitative measures characterizing the resonance. As excitability is ubiquitous in biological systems, our work suggests that aperiodic stochastic resonance may be a universal and effective mechanism for reducing noise associated with input signals for transmitting and processing information.


2019 ◽  
Vol 37 (2) ◽  
pp. 589-606
Author(s):  
Raymundo Juarez ◽  
Vadim Azhmyakov ◽  
A Tadeo Espinoza ◽  
Francisco G Salas

Abstract This paper addresses the problem of robust control for a class of nonlinear dynamical systems in the continuous time domain. We deal with nonlinear models described by differential-algebraic equations (DAEs) in the presence of bounded uncertainties. The full model of the control system under consideration is completed by linear sampling-type outputs. The linear feedback control design proposed in this manuscript is created by application of an extended version of the conventional invariant ellipsoid method. Moreover, we also apply some specific Lyapunov-based descriptor techniques from the stability theory of continuous systems. The above combination of the modified invariant ellipsoid approach and descriptor method makes it possible to obtain the robustness of the designed control and to establish some well-known stability properties of dynamical systems under consideration. Finally, the applicability of the proposed method is illustrated by a computational example. A brief discussion on the main implementation issue is also included.


2015 ◽  
Vol 25 (13) ◽  
pp. 1550186 ◽  
Author(s):  
Hua Shao ◽  
Yuming Shi ◽  
Hao Zhu

This paper is concerned with strong Li–Yorke chaos induced by [Formula: see text]-coupled-expansion for time-varying (i.e. nonautonomous) discrete systems in metric spaces. Some criteria of chaos in the strong sense of Li–Yorke are established via strict coupled-expansions for irreducible transition matrices in bounded and closed subsets of complete metric spaces and in compact subsets of metric spaces, respectively, where their conditions are weaker than those in the existing literature. One example is provided for illustration.


2016 ◽  
Vol 83 (8) ◽  
Author(s):  
Arion Pons ◽  
Stefanie Gutschmidt

This paper presents a generalization of the Laplace transform method (LTM) for determining the flutter points of a linear ordinary-differential aeroelastic system—a linear system involving a spatial derivative as well as a time-eigenvalue parameter. Current implementations of the LTM have two major problems: they are unable to solve systems of arbitrary size, order, and boundary conditions, and they require certain key operations to be performed by hand or with symbolic manipulation libraries. Our generalized method overcomes both these problems. We also devise a new method for solving and visualizing the algebraic system that arises from the LTM procedure. We validate our generalized LTM and novel solution method against both the Goland wing model and a large system of high differential order, as a demonstration of their effectiveness for solving such systems.


1986 ◽  
Vol 39 (7) ◽  
pp. 1013-1018 ◽  
Author(s):  
Graham M. L. Gladwell

This article concerns infinitesimal free vibrations of undamped elastic systems of finite extent. A review is made of the literature relating to the unique reconstruction of a vibrating system from natural frequency data. The literature is divided into two groups—those papers concerning discrete systems, for which the inverse problems are closely related to matrix inverse eigenvalue problems, and those concerning continuous systems governed either by one or the other of the Sturm–Liouville equations or by the Euler–Bernoulli equation for flexural vibrations of a thin beam.


Sign in / Sign up

Export Citation Format

Share Document