Implementation of high-density SNP data for genetic evaluation and QTL discovery in beef cattle

2009 ◽  
Author(s):  
Megan M. Rolf
2018 ◽  
Vol 96 (10) ◽  
pp. 4076-4086
Author(s):  
Justin W Buchanan ◽  
Michael D MacNeil ◽  
Randall C Raymond ◽  
Ashley R Nilles ◽  
Alison Louise Van Eenennaam

2004 ◽  
Vol 27 (4) ◽  
pp. 517-521 ◽  
Author(s):  
José Elivalto Guimarães Campêlo ◽  
Paulo Sávio Lopes ◽  
Robledo de Almeida Torres ◽  
Luiz Otávio Campos da Silva ◽  
Ricardo Frederico Euclydes ◽  
...  

2020 ◽  
Vol 52 (1) ◽  
Author(s):  
Harly J. Durbin ◽  
Duc Lu ◽  
Helen Yampara-Iquise ◽  
Stephen P. Miller ◽  
Jared E. Decker

Abstract Background Heat stress and fescue toxicosis caused by ingesting tall fescue infected with the endophytic fungus Epichloë coenophiala represent two of the most prevalent stressors to beef cattle in the United States and cost the beef industry millions of dollars each year. The rate at which a beef cow sheds her winter coat early in the summer is an indicator of adaptation to heat and an economically relevant trait in temperate or subtropical parts of the world. Furthermore, research suggests that early-summer hair shedding may reflect tolerance to fescue toxicosis, since vasoconstriction induced by fescue toxicosis limits the ability of an animal to shed its winter coat. Both heat stress and fescue toxicosis reduce profitability partly via indirect maternal effects on calf weaning weight. Here, we developed parameters for routine genetic evaluation of hair shedding score in American Angus cattle, and identified genomic loci associated with variation in hair shedding score via genome-wide association analysis (GWAA). Results Hair shedding score was moderately heritable (h2 = 0.34 to 0.40), with different repeatability estimates between cattle grazing versus not grazing endophyte-infected tall fescue. Our results suggest modestly negative genetic and phenotypic correlations between a dam’s hair shedding score (lower score is earlier shedding) and the weaning weight of her calf, which is one metric of performance. Together, these results indicate that economic gains can be made by using hair shedding score breeding values to select for heat-tolerant cattle. GWAA identified 176 variants significant at FDR < 0.05. Functional enrichment analyses using genes that were located within 50 kb of these variants identified pathways involved in keratin formation, prolactin signalling, host-virus interaction, and other biological processes. Conclusions This work contributes to a continuing trend in the development of genetic evaluations for environmental adaptation. Our results will aid beef cattle producers in selecting more sustainable and climate-adapted cattle, as well as enable the development of similar routine genetic evaluations in other breeds.


1988 ◽  
Vol 12 ◽  
pp. 99-110
Author(s):  
E. John Pollak

The beef cattle industry in the United States has undergone dramatic changes over the past decade with the adoption of genetic evaluation programs. The method of choice has been Henderson's mixed model methodology for best linear unbiased prediction (BLUP). The most prevalently used model is the animal model (Henderson and Quaas, 1976) computed by the equivalent reduced animal model (Quaas and Pollak, 1980).Neither the methodology or the models being used are particularly new. What is new in this industry is the widespread application of these techniques to the analysis of the data banks maintained by the breed organizations. Today many breed associations publish a national sire evaluation, and most of these have published their first in the last three years. This rapid proliferation of published evaluations has coincided with an attitude in the industry of promoting specification beef and predictable performance. Genetic evaluations provide information not only to achieve goals in selection but as well for merchandizing cattle based on quantifiable potential. The enthusiasm for genetic evaluations right now in the U.S. beef industry is high.


2007 ◽  
Vol 31 (S1) ◽  
pp. S22-S33 ◽  
Author(s):  
Heike Bickeböller ◽  
Katrina A.B. Goddard ◽  
Robert P. Igo ◽  
Peter Kraft ◽  
Jingky P. Lozano ◽  
...  

2009 ◽  
Vol 75 (20) ◽  
pp. 6515-6523 ◽  
Author(s):  
Terrance M. Arthur ◽  
James E. Keen ◽  
Joseph M. Bosilevac ◽  
Dayna M. Brichta-Harhay ◽  
Norasak Kalchayanand ◽  
...  

ABSTRACT The objectives of the study described here were (i) to investigate the dynamics of Escherichia coli O157:H7 fecal and hide prevalence over a 9-month period in a feedlot setting and (ii) to determine how animals shedding E. coli O157:H7 at high levels affect the prevalence and levels of E. coli O157:H7 on the hides of other animals in the same pen. Cattle (n = 319) were distributed in 10 adjacent pens, and fecal and hide levels of E. coli O157:H7 were monitored. When the fecal pen prevalence exceeded 20%, the hide pen prevalence was usually (25 of 27 pens) greater than 80%. Sixteen of 19 (84.2%) supershedder (>104 CFU/g) pens had a fecal prevalence greater than 20%. Significant associations with hide and high-level hide (≥40 CFU/100 cm2) contamination were identified for (i) a fecal prevalence greater than 20%, (ii) the presence of one or more high-density shedders (≥200 CFU/g) in a pen, and (iii) the presence of one or more supershedders in a pen. The results presented here suggest that the E. coli O157:H7 fecal prevalence should be reduced below 20% and the levels of shedding should be kept below 200 CFU/g to minimize the contamination of cattle hides. Also, large and unpredictable fluctuations within and between pens in both fecal and hide prevalence of E. coli O157:H7 were detected and should be used as a guide when preharvest studies, particularly preharvest intervention studies, are designed.


2016 ◽  
Vol 134 (2) ◽  
pp. 87-97 ◽  
Author(s):  
J.J. Stainton ◽  
B. Charlesworth ◽  
C.S. Haley ◽  
A. Kranis ◽  
K. Watson ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document