scholarly journals Managing Insecticide and Miticide Resistance in Florida Landscapes

EDIS ◽  
2007 ◽  
Vol 2007 (19) ◽  
Author(s):  
Eileen A. Buss ◽  
James F. Price ◽  
Elzie McCord ◽  
Curtis Nagle

ENY-824, a 10-page fact sheet by Eileen A. Buss, James F. Price, Elzie McCord, and Curtis Nagle, encourages landscape managers in Florida to implement resistance management practices. It provides definitions, discussions of resistance development and management, and the use of mixtures, rotations, and mosaics as strategies. Includes references and tables showing the mode of action of insecticides and miticides. Published by the UF Department of Entomology and Nematology, July 2007. ENY-842/IN714: Managing Insecticide and Miticide Resistance in Florida Landscapes (ufl.edu)

EDIS ◽  
2008 ◽  
Vol 2008 (6) ◽  
Author(s):  
Catalina Moyer ◽  
Natalia A. Peres

PP-257, a 4-page illustrated fact sheet by Catalina Moyer and Natalia A. Peres, describes this important fungal disease of gerberas in Florida, its symptoms, development, and management practices. Includes a table of fungicides registered to control powdery mildew on ornamentals in Florida. Published by the UF Department of Plant Pathology, July 2008.


Plants ◽  
2019 ◽  
Vol 8 (11) ◽  
pp. 469 ◽  
Author(s):  
Vila-Aiub

Herbicide resistance is the ultimate evidence of the extraordinary capacity of weeds to evolve under stressful conditions. Despite the extraordinary plant fitness advantage endowed by herbicide resistance mutations in agroecosystems under herbicide selection, resistance mutations are predicted to exhibit an adaptation cost (i.e., fitness cost), relative to the susceptible wild-type, in herbicide untreated conditions. Fitness costs associated with herbicide resistance mutations are not universal and their expression depends on the particular mutation, genetic background, dominance of the fitness cost, and environmental conditions. The detrimental effects of herbicide resistance mutations on plant fitness may arise as a direct impact on fitness-related traits and/or coevolution with changes in other life history traits that ultimately may lead to fitness costs under particular ecological conditions. This brings the idea that a “lower adaptive value” of herbicide resistance mutations represents an opportunity for the design of resistance management practices that could minimize the evolution of herbicide resistance. It is evident that the challenge for weed management practices aiming to control, minimize, or even reverse the frequency of resistance mutations in the agricultural landscape is to “create” those agroecological conditions that could expose, exploit, and exacerbate those life history and/or fitness traits affecting the evolution of herbicide resistance mutations. Ideally, resistance management should implement a wide range of cultural practices leading to environmentally mediated fitness costs associated with herbicide resistance mutations.


Author(s):  
Nikita Gambhir ◽  
Srikanth Kodati ◽  
Matthew Huff ◽  
Flávio Silva ◽  
Olutoyosi Ajayi-Oyetunde ◽  
...  

The goal of this research was to advance the foundational knowledge required to quantify and mitigate fungicide resistance in Rhizoctonia zeae, the seedling disease pathogen of soybean and corn. In vitro sensitivity to azoxystrobin, fludioxonil, sedaxane, and/or prothioconazole was determined for 91 R. zeae isolates obtained mostly from soybean and corn fields in Nebraska. Isolates were sensitive to fludioxonil, sedaxane, and prothioconazole (EC50 < 3 µg/ml) and had a positively skewed EC50 distribution. Isolates were not sensitive to azoxystrobin in vitro (EC50 > 100 µg/ml) or in planta. Application of azoxystrobin did not significantly decrease disease severity or improve total dry weight of the soybean plants (P > 0.05). The risk of resistance development in R. zeae was estimated by characterizing its population structure. Eighty-one R. zeae isolates were genotyped using six microsatellite markers. Results showed that the population has a mixed mode of reproduction and is structured according to geographic region, suggesting limited dispersal. These population characteristics suggest that R. zeae has an intermediate risk of resistance development. Overall, this research established the current status of fungicide sensitivity in R. zeae in Nebraska and estimated its risk of resistance development, which can inform fungicide resistance management for R. zeae.


Plant Disease ◽  
2021 ◽  
Author(s):  
Anna Wallis ◽  
Isabella Magna Yannuzzi ◽  
Mei-Wah Choi ◽  
John Spafford ◽  
Matthew Siemon ◽  
...  

Fire blight, caused by the bacterium Erwinia amylovora, is one of the most important diseases of apple. The antibiotic streptomycin is routinely used in the commercial apple industries of New York and New England to manage the disease. In 2002, and again from 2011 to 2014, outbreaks of streptomycin resistance (SmR) were reported and investigated in NY. Motivated by new grower reports of control failures, we conducted a follow-up investigation of the distribution of SmR and E. amylovora strains for major apple production regions of NY over the last six years (2015-2020). Characterization of clustered regularly interspaced short palindromic repeat (CRISPR) profiles revealed that a few ‘cosmopolitan’ strains were widely prevalent across regions, while many other ‘resident’ strains were confined to one location. In addition, we uncovered novel CRISPR profile diversity in all investigated regions. SmR E. amylovora was detected only in a small area spanning two counties from 2017 to 2020, and always associated with one CRISPR profile (41:23:38), which matched the profile of SmR E. amylovora discovered in 2002. This suggests the original SmR E. amylovora was never fully eradicated and went undetected due to several seasons of low disease pressure in this region. Investigation of several representative isolates under controlled greenhouse conditions indicated significant differences in aggressiveness on ‘Gala’ apples. Potential implications of strain differences include the propensity of strains to become distributed across wide geographic regions and associated resistance management practices. Results from this work will directly influence sustainable fire blight management recommendations for commercial apple industries in NY State and other regions.


Parasitology ◽  
2018 ◽  
Vol 146 (6) ◽  
pp. 774-780 ◽  
Author(s):  
Ibrahim I. Wangwe ◽  
Sarah A. Wamwenje ◽  
Caroline Mirieri ◽  
Nicodemus M. Masila ◽  
Lillian Wambua ◽  
...  

AbstractTrypanocide resistance remains a huge challenge in the management of animal African trypanosomiasis. Paucity of data on the prevalence of multi-drug resistant trypanosomes has greatly hindered optimal veterinary management practices. We use mathematical model predictions to highlight appropriate drug regimens that impede trypanocide resistance development in cattle. We demonstrate that using drugs in decreasing resistance order results in a negligible increase in number of cattle with resistant infection, in contrast to a more pronounced increase from trypanocide use in increasing resistance order. We demonstrate that the lowest levels of trypanocide resistance are achieved with combination therapy. We also show that increasing the number of cattle treated leads to a progressive reduction in the number of cattle with drug resistant infections for treatments of up to 80% of the cattle population for the combination treatment strategy. Our findings provide an initial evidence-based framework on some essential practices that promote optimal use of the handful of trypanocides. We anticipate that our modest forecasts will improve therapeutic outcomes by appropriately informing on the best choice, and combination of drugs that minimize treatment failure rates.


2011 ◽  
Vol 64 ◽  
pp. 119-124 ◽  
Author(s):  
A.H. McKay ◽  
G.C. Hagerty ◽  
G.B. Follas ◽  
M.S. Moore ◽  
M.S. Christie ◽  
...  

Succinate dehydrogenase inhibitor (SDHI) fungicides are currently represented in New Zealand by eight active ingredients bixafen boscalid carboxin fluaxapyroxad fluopyram isopyrazam penthiopyrad and sedaxane They are either currently registered or undergoing development in New Zealand for use against a range of ascomycete and basiodiomycete pathogens in crops including cereals ryegrass seed apples pears grapes stonefruit cucurbits and kiwifruit These fungicides are considered to have medium to high risk of resistance development and resistance management is recommended by the Fungicide Resistance Action Committee (FRAC) in Europe Guidelines are presented for use of SDHI fungicides in New Zealand to help avoid or delay the development of resistance in the fungal pathogens that they target


EDIS ◽  
2006 ◽  
Vol 2006 (17) ◽  
Author(s):  
William M. Stall

Revised! HS-191, a 3-page fact sheet by William M. Stall, describes effective weed management practices for eggplant in Florida and provides a table listing herbicides available to growers for chemical weed control. This publication updates the 2003 table to reflect current recommendations. Published by the UF Department of Horticultural Sciences, October 2006. HS191/WG030: Weed Management in Eggplant (ufl.edu)


EDIS ◽  
2006 ◽  
Vol 2006 (17) ◽  
Author(s):  
William M. Stall

Revised! HS-201, a 3-page fact sheet by William M. Stall, describes effective weed management practices for carrots in Florida and provides a table of listing herbicides available to growers for chemical weed control. This publication updates the 2003 table to reflect current recommendations. Published by the UF Department of Horticultural Sciences, October 2006. HS201/WG026: Weed Control in Carrot (ufl.edu)


EDIS ◽  
2007 ◽  
Vol 2007 (19) ◽  
Author(s):  
R. Krueger ◽  
K. E. Dover ◽  
Robert McSorley ◽  
K. H. Wang

ENY-056, an 8-page fact sheet by R. Krueger, K. E. Dover, R. McSorley, and K. -H. Wang, introduces homeowners to the problem of root-knot nematodes, the use of marigolds as an allelopathic cover crop for nematode suppression. It describes the mode of action, planting tips, considerations, and frequently asked questions. Includes references and tables showing susceptibility of marigold varieties to root-knot and plant-parasitic nematodes in Florida. Published by the UF Department of Entomology and Nematology, August 2007. ENY-056/NG045: Marigolds (Tagetes spp.) for Nematode Management (ufl.edu)


Sign in / Sign up

Export Citation Format

Share Document