scholarly journals Initial study of lipid accumulation in green algal Haematococcus pluvialis Flotow cultured in liquid Bold’s Basal medium aerated

2019 ◽  
Vol 3 (3) ◽  
pp. 144-149
Author(s):  
Nguyen Tran Dong Phuong ◽  
Le Huyen Ai Thuy ◽  
Bui Trang Viet

The fresh green algal Haematococcus pluvialis Flotow was proved to be the starting material for the production of biofuel, high lipid content along with astaxanthin, a high value colorant. In this study, lipid accumulation in H. pluvialis cultured in liquid Bold’s Basal medium aerated was investigated for a period of 12 weeks. Lipid accumulation was evaluated through the expression of two genes: BC (biotin carboxylase, initial gene) and FATA (acyl-acyl carrier protein thioesterase, end gene) in the process of fatty acid biosynthesis with Real-time RT-PCR, lipid determination by Nile Red and biodiesel quantifying by transesterification. The results showed that the expression of two BC and FATA genes was recorded at all weeks of culture. However, the expression of BC and FATA genes increased gradually from the week 9 (1.3, 4.1, respectively) to week 11 (1.7, 30.9, respectively). Meanwhile, yellow fluorescence in the microalgal cells showed that lipid appeared from week 6 to week 12. The obtained biodiesel increased slowly from week 8 (0.036 mg/mL) to week 12 (0.041 mg/mL). At week 11, the expression values of both BC gene (1.7) and FATA gene (30.9) were maximized, leading to the highest biodiesel content at the week 12.

2020 ◽  
Vol 16 (4) ◽  
pp. 679-686
Author(s):  
Nguyen Tran Dong Phuong ◽  
Le Huyen Ai Thuy ◽  
Bui Trang Viet

Haematococcus pluvialis cells were cultured in aerated liquid Bold’s Basal medium in two-stage (initial stage during in 7 weeks for increased biomass growth and second stage during in 3 weeks for increased lipid accumulation) with different volumes 250 mL, 10 L, and 1,000 L. With a volume of 250 mL, the medium was supplied with benzyl adenine (BA), indole-3-acetic acid (IAA) or gibberellic acid (GA3) at concentration from 0.1 - 0.2 mg/L in initial stage and IAA or GA3 at concentration from 0.1 - 0.2 mg/L in second stage. After 10 weeks of culture, results showed that supplement of 0.1 mg/L BA in initial stage and 0.125 mg/L IAA in second stage increased cell density, and microalgal cells had green color with a spherical shape. On the contrary, supplement of 0.15 mg/L IAA in initial stage and 0.175 mg/L GA3 in second stage increased lipid accumulation, and microalgal cells had red color with a spherical shape. With a volume of 10 L, the medium was supplied with 0.1 mg/L BA in initial stage, and treated with separation or combination from 2 - 3 of these factors (nitrogen starvation, 0.5% NaCl, 4.98 mg/L FeSO4) were applied in second stage. The result showed that the cultures was treated with nitrogen starvation increased dry biomass and biofuel, but treated with 4.98 mg/L FeSO4 only increased biofuel. With a volume of 1,000 L, microalgal cells were cultured in BB liquid medium in initial stage, and treated with 4.98 mg/L FeSO4 increased fresh 78.67 mg/mL and dry biomass 2.05 mg/L and total lipid content 28.24 %/ DW.


2021 ◽  
Vol 11 (4) ◽  
pp. 1788
Author(s):  
Thanh-Tri Do ◽  
Binh-Nguyen Ong ◽  
Tuan-Loc Le ◽  
Thanh-Cong Nguyen ◽  
Bich-Huy Tran-Thi ◽  
...  

In the production of astaxanthin from Haematococcus pluvialis, the process of growing algal biomass in the vegetative green stage is an indispensable step in both suspended and immobilized cultivations. The green algal biomass is usually cultured in a suspension under a low light intensity. However, for astaxanthin accumulation, the microalgae need to be centrifuged and transferred to a new medium or culture system, a significant difficulty when upscaling astaxanthin production. In this research, a small-scale angled twin-layer porous substrate photobioreactor (TL-PSBR) was used to cultivate green stage biomass of H. pluvialis. Under low light intensities of 20–80 µmol photons m−2·s−1, algae in the biofilm consisted exclusively of non-motile vegetative cells (green palmella cells) after ten days of culturing. The optimal initial biomass density was 6.5 g·m−2, and the dry biomass productivity at a light intensity of 80 µmol photons m−2·s−1 was 6.5 g·m−2·d−1. The green stage biomass of H. pluvialis created in this small-scale angled TL-PSBR can be easily harvested and directly used as the source of material for the inoculation of a pilot-scale TL-PSBR for the production of astaxanthin.


2018 ◽  
Vol 475 (23) ◽  
pp. 3861-3873 ◽  
Author(s):  
Fuyuan Jing ◽  
Marna D. Yandeau-Nelson ◽  
Basil J. Nikolau

In plants and bacteria that use a Type II fatty acid synthase, isozymes of acyl-acyl carrier protein (ACP) thioesterase (TE) hydrolyze the thioester bond of acyl-ACPs, terminating the process of fatty acid biosynthesis. These TEs are therefore critical in determining the fatty acid profiles produced by these organisms. Past characterizations of a limited number of plant-sourced acyl-ACP TEs have suggested a thiol-based, papain-like catalytic mechanism, involving a triad of Cys, His, and Asn residues. In the present study, the sequence alignment of 1019 plant and bacterial acyl-ACP TEs revealed that the previously proposed Cys catalytic residue is not universally conserved and therefore may not be a catalytic residue. Systematic mutagenesis of this residue to either Ser or Ala in three plant acyl-ACP TEs, CvFatB1 and CvFatB2 from Cuphea viscosissima and CnFatB2 from Cocos nucifera, resulted in enzymatically active variants, demonstrating that this Cys residue (Cys348 in CvFatB2) is not catalytic. In contrast, the multiple sequence alignment, together with the structure modeling of CvFatB2, suggests that the highly conserved Asp309 and Glu347, in addition to previously proposed Asn311 and His313, may be involved in catalysis. The substantial loss of catalytic competence associated with site-directed mutants at these positions confirmed the involvement of these residues in catalysis. By comparing the structures of acyl-ACP TE and the Pseudomonas 4-hydroxybenzoyl-CoA TE, both of which fold in the same hotdog tertiary structure and catalyze the hydrolysis reaction of thioester bond, we have proposed a two-step catalytic mechanism for acyl-ACP TE that involves an enzyme-bound anhydride intermediate.


2017 ◽  
Vol 58 (11) ◽  
pp. 2210-2219 ◽  
Author(s):  
Johan G. Schnitzler ◽  
Sophie J. Bernelot Moens ◽  
Feiko Tiessens ◽  
Guido J. Bakker ◽  
Geesje M. Dallinga-Thie ◽  
...  

2021 ◽  
Author(s):  
Zhang Tian ◽  
Jingxin Liu ◽  
Jianzhong Zhu ◽  
Rongsong Li ◽  
Ligen Lin

Abstract Background: Non-alcoholic fatty liver disease (NAFLD) is characterized by ectopic accumulation of triglycerides in the liver. Emerging evidence has demonstrated that lipophagy regulates lipid mobilization and energy homeostasis in liver. Sirtuin 3 (SIRT3), a mitochondrial NAD+-dependent deacetylase, modulates the activities of several substrates involving in autophagy and energy metabolism. Honokiol (HK) is a natural lignan from the plants of Magnolia genus that exhibits potent liver protective property. Methods: AML12 was challenged with 500 μM palmitic acid and 250 μM oleic acid mixture solution to induce lipotoxicity. The expression of autophagy-related and AMP-activated protein kinase (AMPK) pathway proteins was evaluated by Western blotting and immunofluorescence staining. Intracellular lipid accumulation was validated by Nile red staining. Molecular docking analysis was performed on AutoDock 4.2.Results: HK (5 and 10 μM) was found to attenuate lipid accumulation through promoting SIRT3-AMPK-mediated autophagy, mainly on lipid droplets. HK had hydrophobic interaction with amino acid residues (PHE294, GLU323 and VAL324) and NAD+. Moreover, HK improved mitochondrial function to enhance lipolysis, through decreasing the acetylated long-chain acyl-CoA dehydrogenase level. Conclusions: These results suggest that HK could ameliorate lipotoxicity in hepatocytes by activating SIRT3-AMPK-lipophagy axis, which might be a potential therapeutic agent against NAFLD.


PeerJ ◽  
2021 ◽  
Vol 9 ◽  
pp. e11525
Author(s):  
Hong Li ◽  
Jun Tan ◽  
Yun Mu ◽  
Jianfeng Gao

Chlorella has become an important raw material for biodiesel production in recent years, and Chlorella sp. TLD6B, a species with high lipid concentrations and high salt and drought tolerance, has been cultivated on a large scale. To explore the lipid accumulation of Chlorella sp. TLD6B and its relationship to external NaCl concentrations, we performed physiological measurements and genome-wide gene expression profiling under different levels of salt stress. Chlorella sp. TLD6B was able to tolerate high levels of salt stress (0.8 M NaCl addition). Lipid concentrations initially increased and then decreased as salt stress increased and were highest under the addition of 0.2 M NaCl. Comparative transcriptomic analysis revealed that salt stress enhanced the expression of genes related to sugar metabolism and fatty acid biosynthesis (the ACCases BC and BCCP, KAS II, and GPDHs involved in TAG synthesis), thereby promoting lipid accumulation under the addition of 0.2 M NaCl. However, high salinity inhibited cell growth. Expression of three SADs, whose encoded products function in unsaturated fatty acid biosynthesis, was up-regulated under high salinity (0.8 M NaCl addition). This research clarifies the relationship between salt tolerance and lipid accumulation and promotes the utilization of Chlorella sp. TLD6B.


1990 ◽  
Vol 259 (6) ◽  
pp. G998-G1009
Author(s):  
M. J. Rutten ◽  
C. D. Moore ◽  
R. Delcore ◽  
L. Y. Cheung

We investigated the effects of feeding on lipid accumulation and transepithelial transport using in vitro Necturus gastric antral mucosae. Antra from fed Necturi were examined for lipid accumulation using light, fluorescence, histochemical, and electron microscopy. Ussing chambers were used for measurement of potential difference (PD), transepithelial resistance (Rt), short-circuit current (Isc), and unidirectional fluxes of 22Na+ and [3H]mannitol. Light microscopy of antra from 2-day postfed animals showed many intracellular lipid granules in surface mucous epithelial cells. These granules could be distinguished from other intracellular organelles by their high affinity for osmium and the lipid fluorescent probe Nile red. Glycoprotein cytochemical staining showed these granules to be distinct from the epithelial cell mucous granules. Electron microscopy showed the lipid granules to be part of a membranous reticular network. Two-day postfed animals also had a approximately 3.5-fold increase in amiloride-sensitive Isc and PD, a decrease in Rt, and an increased luminal-to-serosal Na+ fluxes. Transepithelial [3H]mannitol fluxes were low and remained unchanged in both fasted and 2-day postfed animals. After 2 days of feeding, the PD and Isc began to decrease followed by a secondary increase in Rt. Feeding Necturi a corn oil diet did not induce the appearance of either cellular lipid or alterations in Isc but produced a transient increase in Rt. Our data show that feeding (goldfish) to Necturi causes an increase in both lipid accumulation and amiloride-sensitive Na+ transport in gastric antral cells.


Planta ◽  
2010 ◽  
Vol 231 (6) ◽  
pp. 1277-1289 ◽  
Author(s):  
Damián González-Mellado ◽  
Penny von Wettstein-Knowles ◽  
Rafael Garcés ◽  
Enrique Martínez-Force

Sign in / Sign up

Export Citation Format

Share Document