scholarly journals Effects of drought stress on shoot development of tomato (Solanum lycopersicum L.)

2021 ◽  
Vol 5 (2) ◽  
pp. 1208-1215
Author(s):  
Tuan Minh Nguy ◽  
Thang Thanh Tran ◽  
Huong Thanh Tran

In recent years, drought stress was strongly affected on the development and yield of tomatoes. There are increasing interests in the study of physiological transformations in adaption to stress in plants In this study, effects of drought stress (mannitol at different concentration) on the development of tomato shoot were studied. Morphological and physiological changes during the development of shoot under drought stress conditions were analyzed. Based on the analysis results, the combination of cytokinin and gibberellin was treated to increase the drought stress tolerance of plants. Results showed that mannitol at 20 g/L induced tomato drought stress. Shoot height, number of leaves, leaf area, and the number of roots significantly decreased in the drought stress condition compared to the control. The formation superoxide (O2-) and hydrogen peroxide (H2O2) occurred in the meristem, elongation region and cap of the roots in the drought stress condition instead of only cap root in the control. In the drought stress condition, there was an increase in respiration intensity, proline and carotenoid content, and abscisic acid activity. In contrast, the content of chlorophyll, photosynthesis intensity, cytokinin and gibberellin activity decreased in comparison with the control. The combination treatment of zeatin 0.5 mg/L and GA3 0.5 mg/L improved the drought stress tolerance of plants. The shoot height, number of leaves, leaf area and number of roots of the treated plants were higher than those of the control plants.

2020 ◽  
pp. 34-46 ◽  
Author(s):  
Gali Adamu Ishaku ◽  
Daniel Thakuma Tizhe ◽  
Raji Arabi Bamanga ◽  
Elizabeth Toyin Afolabi

Drought stress in plants has become one of the major abiotic stress that limits the growth and development of plants which also contributes to low yields. Biotechnology which has new and emerging techniques can be use to solve the problem of drought stress in plants. This review aimed at identifying drought stress tolerance in plants at different stages, how plants respond to drought stress using different methods and the application of different biotechnology methods to improve drought tolerance in plants. Some important parameters about drought stress in plants such as drought tolerance mechanisms, plants responses to drought stress, gene regulation for drought stress tolerance in plants, effects of drought stress at different stages of plant growth and biotechnology methods in developing drought tolerance in plants was reviewed. The use of biotechnology methods such as classical breeding, use of genetic manipulation, genes from resurrection plants and Protoplast fusion was discussed. Drought stress affects our plants seriously and it leads to wilts, reduction of yields and death of plants at different developmental stages. Plants have developed different mechanisms to respond to drought stress but these mechanisms are not sufficient enough without the application of biotechnology to greatly improve the growth, development and increase yield in pants. The use of biotechnology greatly improves plants ability to tolerate drought stress depending on the plant species and period of exposure. The use of biotechnology methods has become very vital in improving plants drought stress so as to overcome the major problems of plants which includes increase in population and climatic change.


Author(s):  
Sadia Perween ◽  
Anand Kumar ◽  
Bishun Deo Prasad ◽  
Mukesh Choudhary

A set of 48 rice genotypes were evaluated to assess the magnitude of genetic diversity under irrigated (control) and reproductive stage drought stress conditions during Kharif, 2018 at Rice Research Farm, Bihar Agricultural University, Sabour (Bhagalpur), India. On the basis of D2 statistics, all the genotypes were grouped into nineteen clusters in irrigated condition with cluster I consisting of maximum number of genotypes (24) followed by cluster III (7) and rest of the clusters were represented by single genotype in irrigated condition. Under drought stress condition, forty eight genotypes were grouped into eleven clusters, cluster I consisted of maximum number of genotypes (24) followed by cluster II and III (8 genotypes in each cluster) and rest of the clusters were mono-genotypic. The highest inter-cluster distance was recorded between cluster XVIII and XIX (28.53), followed by cluster X and VIII (24.20), cluster XIII and XVIII (23.98) and cluster VII and XVIII (23.79) in irrigated condition while in drought stress condition the highest inter-cluster distance was observed between cluster IX and X (31.72), followed by cluster V and IX (28.77), cluster VI and VII (25.98) and cluster IV and IX (25.98) indicating wider genetic diversity among the genotypes between these clusters. The hybridisation programme involving genotype of cluster XVIII and cluster XIX under irrigated condition and the genotypes of cluster IX and X under drought stress condition could be undertaken to isolate high yielding segregants, since these genotypes have high yielding potential, number of effective tillers per hill, relative water content, leaf area, root biomass, panicle length, biological yield, harvest index, plant height, number of fertile grains per panicle, total number of spikelets per panicle, leaf area and proline content with more genetic distances. The parents for hybridisation could be selected on the basis of their large inter-cluster distance for isolating useful recombinants in the segregating generations. Hence, these genotypes might be used in a multiple crossing programme to recover transgressive segregants. Therefore, it is suggested that if the diverse genotypes from these groups along with the other desirable attributes are used in breeding programmes, it is expected to produce better segregants for high grain yield and yield contributing traits due to non-allelic interaction.


2020 ◽  
Vol 53 (1) ◽  
Author(s):  
Asma Asma ◽  
Iqbal Hussain ◽  
Muhammad Yasin Ashraf ◽  
Muhammad Arslan Ashraf ◽  
Rizwan Rasheed ◽  
...  

2019 ◽  
Vol 13 (01) ◽  
pp. 35-44 ◽  
Author(s):  
Willian Giordani ◽  
◽  
Leandro Simões Azeredo Gonçalves ◽  
Larissa Alexandra Cardoso Moraes ◽  
Leonardo Cesar Ferreira ◽  
...  

2015 ◽  
Vol 96 ◽  
pp. 83-89 ◽  
Author(s):  
M.S. Sujith Kumar ◽  
Kishwar Ali ◽  
Anil Dahuja ◽  
Aruna Tyagi

2018 ◽  
Vol 499 (4) ◽  
pp. 777-782 ◽  
Author(s):  
Jinhua Li ◽  
Yaling Wang ◽  
Juanjuan Wei ◽  
Yu Pan ◽  
Chenggang Su ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document