scholarly journals Long-term changes of surface water in water bodies near Mala Planina as an Ecosystem Service

Author(s):  
B. Grigorov ◽  
◽  
A. Assenov ◽  
◽  
2019 ◽  
Vol 11 (19) ◽  
pp. 2213 ◽  
Author(s):  
Yue Deng ◽  
Weiguo Jiang ◽  
Zhenghong Tang ◽  
Ziyan Ling ◽  
Zhifeng Wu

The spatiotemporal changes of open-surface water bodies in the Yangtze River Basin (YRB) have profound influences on sustainable economic development, and are also closely relevant to water scarcity in China. However, long-term changes of open-surface water bodies in the YRB have remained poorly characterized. Taking advantage of the Google Earth Engine (GEE) cloud platform, this study processed 75,593 scenes of Landsat images to investigate the long-term changes of open-surface water bodies in the YRB from 1984 to 2018. In this study, we adopted the percentile-based image composite method to collect training samples and proposed a multiple index water detection rule (MIWDR) to quickly extract the open-surface water bodies. The results indicated that (1) the MIWDR is suitable for the long-term and large-scale Landsat water bodies mapping, especially in the urban regions. (2) The areas of permanent water bodies and seasonal water bodies were 29,076.70 km2 and 21,526.24 km2, accounting for 57.46% and 42.54% of the total open-surface water bodies in the YRB, respectively. (3) The permanent water bodies in the YRB increased along with the decreases in the seasonal water bodies from 1984 to 2018. In general, the total open-surface surface water bodies in the YRB experienced an increasing trend, with an obvious spatial heterogeneity. (4) The changes of open-surface water bodies were associated with the climate changes and intense human activities in the YRB, however, the influences varied among different regions and need to be further investigated in the future.


2020 ◽  
Vol 12 (19) ◽  
pp. 3157
Author(s):  
Andrew Ogilvie ◽  
Jean-Christophe Poussin ◽  
Jean-Claude Bader ◽  
Finda Bayo ◽  
Ansoumana Bodian ◽  
...  

Accurate monitoring of surface water bodies is essential in numerous hydrological and agricultural applications. Combining imagery from multiple sensors can improve long-term monitoring; however, the benefits derived from each sensor and the methods to automate long-term water mapping must be better understood across varying periods and in heterogeneous water environments. All available observations from Landsat 7, Landsat 8, Sentinel-2 and MODIS over 1999–2019 are processed in Google Earth Engines to evaluate and compare the benefits of single and multi-sensor approaches in long-term water monitoring of temporary water bodies, against extensive ground truth data from the Senegal River floodplain. Otsu automatic thresholding is compared with default thresholds and site-specific calibrated thresholds to improve Modified Normalized Difference Water Index (MNDWI) classification accuracy. Otsu thresholding leads to the lowest Root Mean Squared Error (RMSE) and high overall accuracies on selected Sentinel-2 and Landsat 8 images, but performance declines when applied to long-term monitoring compared to default or site-specific thresholds. On MODIS imagery, calibrated thresholds are crucial to improve classification in heterogeneous water environments, and results highlight excellent accuracies even in small (19 km2) water bodies despite the 500 m spatial resolution. Over 1999–2019, MODIS observations reduce average daily RMSE by 48% compared to the full Landsat 7 and 8 archive and by 51% compared to the published Global Surface Water datasets. Results reveal the need to integrate coarser MODIS observations in regional and global long-term surface water datasets, to accurately capture flood dynamics, overlooked by the full Landsat time series before 2013. From 2013, the Landsat 7 and Landsat 8 constellation becomes sufficient, and integrating MODIS observations degrades performance marginally. Combining Landsat and Sentinel-2 yields modest improvements after 2015. These results have important implications to guide the development of multi-sensor products and for applications across large wetlands and floodplains.


2020 ◽  
Author(s):  
Linlin Li ◽  
Anton Vrieling ◽  
Andrew Skidmore ◽  
Tiejun Wang

<p>Wetlands are among the most biodiverse ecosystems in the world, due largely to their dynamic hydrology. Frequent observations by satellite sensors such as the Moderate Resolution Imaging Spectrometer (MODIS) allow for monitoring the seasonal, inter-annual and long-term dynamics of surface water extent. However, existing MODIS-based studies have only demonstrated this for large water bodies despite the ecological importance of smaller-sized wetland systems. In this paper, we constructed the temporal dynamics of surface water extent for 340 individual water bodies in the Mediterranean region between 2000 and 2017, using a previously developed 8-day 500 m MODIS surface water fraction (SWF) dataset. These water bodies has a wide range of size, specifically 0.01 km<sup>2</sup> and larger. We then compared the water extent time series derived from MODIS SWF with those derived from a Landsat-based dataset. Results showed that MODIS- and Landsat-derived water extent time series showed a high correlation (r = 0.81) for more dynamic water bodies. Our MODIS SWF dataset can also effectively monitor the variability of very small water bodies (<1 km<sup>2</sup>) when comparing with Landsat data as long as the temporal variability in their surface water area was high. We conclude that MODIS SWF is a useful product to help understand hydrological dynamics for both small and larger-sized water bodies, and to monitor their seasonal, intermittent, inter-annual and long-term changes.</p>


Nature ◽  
2016 ◽  
Vol 540 (7633) ◽  
pp. 418-422 ◽  
Author(s):  
Jean-François Pekel ◽  
Andrew Cottam ◽  
Noel Gorelick ◽  
Alan S. Belward

2019 ◽  
Vol 214 ◽  
pp. 164-177 ◽  
Author(s):  
I.Tonguç Uysal ◽  
Ezgi Ünal-İmer ◽  
James Shulmeister ◽  
Jian-Xin Zhao ◽  
Volkan Karabacak ◽  
...  

2013 ◽  
Vol 45 (3) ◽  
pp. 308-321 ◽  
Author(s):  
Elga Apsīte ◽  
Didzis Elferts ◽  
Andrejs Zubaničs ◽  
Inese Latkovska

Changes in the hydrological regime of the lakes of Latvia depend on natural and anthropogenic causes. This publication summarises the results of the research on the long-term changes in the water level, thermal and ice regimes in the seven largest lakes of Latvia: Liepājas, Usma, Ķīšezers, Burtnieks, Rāzna, Sventes and Lielais Ludzas, and their regional specifics from 1926 to 2002. For most of the studied lakes, the water level has been regulated, except for the lakes Liepājas, Burtnieks and Ķīšezers. Global climate warming has caused considerable changes in the hydrological regime of the lakes during the last decades and the surface water temperature has increased. At the same time, the number of days with ice cover and the thickness of ice have decreased. A positive trend in the freezing date and a statistically significant negative trend for the ice break-up date was found for all lakes. The lakes Liepājas and Usma are located in the western part and Lake Kīšezers in the central part, therefore their hydrological regime, in particular, the thermal and ice regime, differs from the lakes Burtnieks, Rāznas, Sventes and Lielais Ludzas which are located in the northern and south-eastern part of Latvia.


2021 ◽  
Author(s):  
Cousquer Yohann ◽  
Jourde Hervé

<p>A quantitative estimation of the sustainability of groundwater resources is a challenge for water supplies. This study focuses on karstic hydro systems, which provide water resources to a large part of the Mediterranean population. Here, we address the long-term changes in the functioning of the Lez karst aquifer, which has been providing water to the city of Montpellier since the XIX<sup>th</sup> century.  Before 1965, only the natural overflow of the spring was used, then pumping in the spring, down to -6.50 m below the overflow level of the spring, was performed until 1981. After this date, the management of the water resource consisted in pumping groundwater at a much greater flow rate (up to 2000 l/s) than the natural discharge during low flow (200 l/s), which seasonally generates important drawdowns (down to ~25 m) at regional scale.</p><p>The available time series consist in more than 70 years of discharge and water table (with some gaps) that encompass the three kinds of groundwater management, spanning from a passive management to the current active management. The change in water budget terms over time (before and after active management) highlights the modification of transfers and storage in the different karst compartments (epikarst, unsaturated zone, saturated zone), and the climatic variability of precipitation, evapotranspiration at inter-annual. A lumped parameter model was set up in order to simulate spring discharge, while accounting for surface water and grandwater level dynamics, and better assess the changes in the storage dynamics within the different compartments (matrix-conduits) of the karst. A robust parameter estimation, accounting for groundwater discharge and surface water discharge observations, has been conducted using a Monte-Carlo procedure. In order to obtaines a robust model, divers data type such as groundwater flow, surface flow and water level, have been used. [H1]  Once the model was calibrated over (1955-2020) reference period, several prospective management scenarios based on pumping discharge were simulated with an estimation of predictive uncertainty. This allowed evaluating the influence of pumping at large flow rate (active management) on the flux and storage on matrix-conduits exchanges of such karst hydrosystem. A modification on both the discharge rates and the direction of water exchanges between compartments, and especially between matrix and conduits, have been noted. The importance of climatic variability at inter-annual scale on water availability has been discussed as well.</p>


Sign in / Sign up

Export Citation Format

Share Document