scholarly journals Transient Free Convection and Heat Transfer in a Partitioned Attic-Shaped Space under Diurnal Thermal Forcing

2021 ◽  
Vol 118 (3) ◽  
pp. 487-506
Author(s):  
Suvash C. Saha ◽  
Ali M. Sefidan ◽  
Atta Sojoudi ◽  
Mohammad M. Molla
2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Mohamed Dhia Massoudi ◽  
Mohamed Bechir Ben Hamida ◽  
Mohammed A. Almeshaal ◽  
Yahya Ali Rothan ◽  
Khalil Hajlaoui

Purpose The purpose of this paper is to examine numerically the magnetohydrodynamic (MHD) free convection and thermal radiation heat transfer of single walled carbon nanotubes-water nanofluid within T-inverted shaped corrugated cavity comprising porous media including uniform heat source/sink for solar energy power plants applications. Design/methodology/approach The two-dimensional numerical simulation is performed by drawing on Comsol Multiphysics program, based on the finite element process. Findings The important results obtained show that increasing numbers of Rayleigh and Darcy and the parameter of radiation enhance the flow of convection heat. Furthermore, by increasing the corrugation height, the convection flow increases, but it decreases with the multiplication of the corrugation height. The use of a flat cavity provides better output than a corrugated cavity. Originality/value The role of surface corrugation parameters on the efficiency of free convection and heat transfer of thermal radiation within the porous media containing the T-inverted corrugated cavity including uniform heat source/sink under the impact of Lorentz forces has never been explored. A contrast is also established between a flat cavity and a corrugated one.


Author(s):  
Susumu Yamashita ◽  
Shinichiro Uesawa ◽  
Hiroyuki Yoshida

Fuel debris retrieval in atmospheric conditions is proposed as one candidate in the Fukushima Daiichi NPS since it can suppress generation of the contaminated water. However, there are unknowns and uncertainties to evaluate the air cooling performance of the fuel debris. Solving the problems, we have been developing the air-cooling analysis method for accumulated debris in the pedestal. A numerical simulation code JUPITER, which is based on a CFD technics and treats a multi-phase, multi-component thermal-hydraulics, is used as the basis of the method. We preliminary evaluated the effect of debris shapes and heat source conditions on free convection and heat transfer in the simplified structure of the pedestal region using the JUPITER. As a result, it was confirmed that the flow pattern of the free convection in the pedestal clearly differs with debris shapes and a correlation exists between the temperature distribution and the velocity fluctuation around the debris surface.


Sign in / Sign up

Export Citation Format

Share Document