scholarly journals Effect of Non-Convective Zone Thickness on Thermal Efficiency of Salt Gradient Solar Ponds

2021 ◽  
Vol 118 (4) ◽  
pp. 1185-1195
Author(s):  
Nan Li ◽  
Ruiyang Xu ◽  
Caihong Zhang ◽  
Guoping Wu
2013 ◽  
Vol 448-453 ◽  
pp. 1521-1524
Author(s):  
Chun Juan Gao ◽  
Qi Zhang ◽  
Hai Hong Wu ◽  
Liang Wang ◽  
Xi Ping Huang

The solar ponds with a surface of 0.3m2were filled with different concentration salt water and fresh water. The three layer’s structure of solar ponds was formed in the laboratory ponds by using the salinity redistribution. The performance and diffusion of salinity were xperimentally in the solar pond. The measurements were taken and recorded daily at various locations in the salt-gradient solar pond during a period of 30 days of experimentation. The experimental results showed that the salinity gradient layer can sustain a longer time when the lower convective zone is thicker, which is benefit to store solar energy. Therefore, properly increasing the height of LCZ is a good method to enhance the solar pond performance.


2011 ◽  
Vol 347-353 ◽  
pp. 174-177 ◽  
Author(s):  
Dan Wu ◽  
Hong Sheng Liu ◽  
Wen Ce Sun

The performance of Salt-gradient solar ponds (SGSP) with and without the solar collector are investigated experimentally in this paper. Two mini solar ponds with same structure are built, and one the them is appended with an exceptive solar collector for compared study. The salinity, temperature and turbidity of solar pond are studied contrastively for the two solar ponds under the same ambient conditions. The ambient temperatures,humidity and solar radiation are investigated during the experimental period. It was found that the temperature of the lower convective zone in the solar pond coupled with a solar collector increases by about 20% due to the introduce of solar collector.


Author(s):  
Shivam Prajapati ◽  
Nishi Mehta ◽  
Shulabh Yadav

1996 ◽  
Vol 118 (1) ◽  
pp. 37-44 ◽  
Author(s):  
G. A. Eghneim ◽  
S. J. Kleis

A combined experimental and numerical study was conducted to support the development of a new gradient maintenance technique for salt-gradient solar ponds. Two numerical models were developed and verified by laboratory experiments. The first is an axisymmetric (near-field) model which determines mixing and entrainment in the near-field of the injecting diffuser by solving the conservation equations of mass, momentum, energy, and salt. The model assumes variable properties and uses a simple turbulence model based on the mixing length hypothesis to account for the turbulence effects. A series of experimental measurements were conducted in the laboratory for the initial adjustment of the turbulence model and verification of the code. The second model is a one-dimensional far-field model which determines the change of the salt distribution in the pond gradient zone as a result of injection by coupling the near-field injection conditions to the pond geometry. This is implemented by distributing the volume fluxes obtained at the domain boundary of the near-field model, to the gradient layers of the same densities. The numerical predictions obtained by the two-region model was found to be in reasonable agreement with the experimental data.


1987 ◽  
Vol 20 (8) ◽  
pp. 1067-1071 ◽  
Author(s):  
R S Beniwal ◽  
R Singh ◽  
N S Saxena ◽  
R C Bhandari

Sign in / Sign up

Export Citation Format

Share Document