Experimental Study on Solar Ponds Combination with Solar Collector

2011 ◽  
Vol 347-353 ◽  
pp. 174-177 ◽  
Author(s):  
Dan Wu ◽  
Hong Sheng Liu ◽  
Wen Ce Sun

The performance of Salt-gradient solar ponds (SGSP) with and without the solar collector are investigated experimentally in this paper. Two mini solar ponds with same structure are built, and one the them is appended with an exceptive solar collector for compared study. The salinity, temperature and turbidity of solar pond are studied contrastively for the two solar ponds under the same ambient conditions. The ambient temperatures,humidity and solar radiation are investigated during the experimental period. It was found that the temperature of the lower convective zone in the solar pond coupled with a solar collector increases by about 20% due to the introduce of solar collector.

2013 ◽  
Vol 448-453 ◽  
pp. 1521-1524
Author(s):  
Chun Juan Gao ◽  
Qi Zhang ◽  
Hai Hong Wu ◽  
Liang Wang ◽  
Xi Ping Huang

The solar ponds with a surface of 0.3m2were filled with different concentration salt water and fresh water. The three layer’s structure of solar ponds was formed in the laboratory ponds by using the salinity redistribution. The performance and diffusion of salinity were xperimentally in the solar pond. The measurements were taken and recorded daily at various locations in the salt-gradient solar pond during a period of 30 days of experimentation. The experimental results showed that the salinity gradient layer can sustain a longer time when the lower convective zone is thicker, which is benefit to store solar energy. Therefore, properly increasing the height of LCZ is a good method to enhance the solar pond performance.


2021 ◽  
Vol 39 (2) ◽  
pp. 486-492
Author(s):  
Periyasamy Rangaraju ◽  
Santhia Sivakumar

Varying salt density solar pond is a method that is best suited to absorb and store solar energy. This examination includes the test enhancement of the permeable and non-permeable sunlight-based ponds dependent on its exhibition in different conditions. This experiment was done in Salem, Tamil Nadu, India. This particular topographical area has a high level of solar radiation and is a tropical district. Readings for a period of 30 days were taken; the temperature circulation, a measure of heat energy stored and concentration of salt density was assessed. For examination, two comparable solar ponds of volume 0.02 m3 and a height of 0.32 m was built. Black granite pieces, broken glass pieces, and welding spatter were used as a permeable medium in the lower convective zone (LCZ) in one of the two solar ponds. The temperatures of the permeable solar pond and non-permeable solar pond reached the highest values of 42.3℃ and 40.6℃ respectively. The solar pond with a permeable medium demonstrated an increase of 4.18% in temperature. The difference in amounts of stored thermal energy is 4.54 kJ. From the obtained parameters, the optimization is done and the permeable medium solar pond is found to store more amount of heat energy than the non- permeable solar pond. For the optimization of the mixed medium, criterion parameter βelk has been acquired in the solar pond.


2014 ◽  
Vol 1055 ◽  
pp. 188-192
Author(s):  
Hong Sheng Liu ◽  
Dan Wu ◽  
Wen Ce Sun

In this work, several methods are experimentally investigated with the aim of enhancing the thermal characters of solar pond. Which included putting porous medium to the bottom of the solar pond, combining a solar collector and building evaporation basin respectively .Two mini cylindrical solar ponds are built and the thermal performance of the solar pond is investigated by comparing the temperature distribution of the two solar ponds. The experimental results show that the utilization of the porous medium in the bottom layer might enhance the heat storage ability of the lower convective zone (LCZ); The introduction of the solar collector might advance the temperature of the LCZ greatly, which lessens the heat loss of the whole system. These methods play important roles in enhancing the thermal characters of the solar pond, which brings forward a new way for the improving of solar pond.


2010 ◽  
Vol 42 ◽  
pp. 294-298
Author(s):  
Hua Wang ◽  
Jun Li Liu ◽  
Jia Ning Zou

In this study, adding coal cinder to bottom of solar pond as a means of increasing temperature of the solar pond is presented. A series of small-scale tests are conducted in the simple mini solar ponds. These small-scale tests include the temperature evolution comparisons of this mode with other normal modes; the comparisons of the material added to LCZ and the comparisons of the different soaking times for coal cinder. In addition, a numerical calculation on predicting temperature evolution in large area of salt gradient solar pond is also given. Both of the experimental and numerical results suggest that adding porous media with low thermal diffusivity (e.g. coal cinder) could significantly increase the temperature in the vicinity of the bottom of the pond. From the view of long-term, this effect is supposed to enhance the average temperature of the solar pond.


Solar Energy ◽  
2010 ◽  
Vol 84 (1) ◽  
pp. 24-31 ◽  
Author(s):  
Choubani Karim ◽  
Zitouni Slim ◽  
Charfi Kais ◽  
Safi Mohamed Jomâa ◽  
Aliakbar Akbarzadeh

2014 ◽  
Vol 926-930 ◽  
pp. 4373-4376
Author(s):  
Chun Juan Gao ◽  
Qi Zhang ◽  
Liang Wang ◽  
Yan An Zhang ◽  
Xi Ping Huang

In this paper, we established a simulated mini solar pond, and carried out a series of experiments to maintain the salt gradient solar pond. Meanwhile, the salinity variation of the lower convective zone (LCZ) of solar pond was investigated. Research results showed that by means of injecting saturated brine into the bottom of solar pond periodically, the salt gradients of solar pond could maintain relatively stable during a long time.


2014 ◽  
Vol 472 ◽  
pp. 409-412
Author(s):  
Chun Juan Gao ◽  
Qi Zhang ◽  
Ze Liang Dong ◽  
Shu Yuan Guo ◽  
Xi Ping Huang

In this paper, it was presented that the establishment and experimental investigation of a salt-gradient solar pond. The solar pond was filled with salty water to form three zones (e.g., upper convective zone, non-convective zone and lower convective zone) accordingly with different methods of saline injection. Parameters like salinity and temperature were measured and recorded daily at various locations in the salt-gradient solar pond. The results showed that solar pond collected and stored solar energy for a long period of time can be possible by controlling the thickness and salinity of salt gradient layer of the solar pond.


Sign in / Sign up

Export Citation Format

Share Document