scholarly journals Protective Immune Response against Bacillus anthracis Induced by Intranasal Introduction of a Recombinant Adenovirus Expressing the Protective Antigen Fused to the Fc-fragment of IgG2a

Acta Naturae ◽  
2014 ◽  
Vol 6 (1) ◽  
pp. 76-84 ◽  
Author(s):  
D. N. Shcherbinin ◽  
◽  
I. B. Esmagambetov ◽  
A. N. Noskov ◽  
Yu. O. Selyaninov ◽  
...  
Acta Naturae ◽  
2014 ◽  
Vol 6 (1) ◽  
pp. 76-84 ◽  
Author(s):  
D. N. Shcherbinin ◽  
I. B. Esmagambetov ◽  
A. N. Noskov ◽  
Yu. O. Selyaninov ◽  
I. L. Tutykhina ◽  
...  

Anthrax is a particularly dangerous infectious disease that affects humans and livestock. It is characterized by intoxication, serosanguineous skin lesions, development of lymph nodes and internal organs, and may manifest itsself in either a cutaneous or septic form. The pathogenic agent is Bacillus anthracis, a grampositive, endospore-forming, rod-shaped aerobic bacterium. Efficacious vaccines that can rapidly induce a long-term immune response are required to prevent anthrax infection in humans. In this study, we designed three recombinant human adenovirus serotype-5-based vectors containing various modifications of the fourth domain of the B. anthracis protective antigen (PA). Three PA modifications were constructed: a secretable form (Ad-sPA), a non-secretable form (Ad-cPA), and a form with the protective antigen fused to the Fc fragment of immunoglobulin G2a (Ad-PA-Fc). All these forms exhibited protective properties against Bacillus anthracis. The highest level of protection was induced by the Ad-PA-Fc recombinant adenovirus. Our findings indicate that the introduction of the Fc antibody fragment into the protective antigen significantly improves the protective properties of the Ad-PA-Fc adenovirus against B. anthracis.


2016 ◽  
Vol 66 (6) ◽  
pp. 645 ◽  
Author(s):  
Anshul Varshney ◽  
Nidhi Puranik ◽  
M. Kumar ◽  
A.K. Goel

Anthrax, caused by Bacillus anthracis is known to occur globally since antiquity. Besides being an important biothreat agent, it is an important public health importance pathogen also in countries like India. B. anthracis secretes three distinct toxins, namely protective antigen (PA), lethal factor (LF) and edema factor (EF). PA is the central moiety of the anthrax toxin complex and therefore has been a molecule of choice for vaccine development. PA has four different domains with different functions. In this study, the major domains of PA were cloned and expressed in bacterial system. The purified recombinant proteins were used to determine the humoral immune response by ELISA using 43 human cutaneous anthrax serum samples. The maximum immunoreactivity was observed with the whole PA protein followed by domain 2, 4 and 1. The study corroborated that in addition to full PA, individual domain 2 and 4 can also be good target for vaccine development as well as for serodiagnostic assays for cutaneous anthrax


2020 ◽  
Vol 17 (5) ◽  
pp. 414-421
Author(s):  
Na Young Kim ◽  
Won Rak Son ◽  
Jun Young Choi ◽  
Chi Ho Yu ◽  
Gyeung Haeng Hur ◽  
...  

Purpose: Anthrax is a lethal bacterial disease caused by gram-positive bacterium Bacillus anthracis and vaccination is a desirable method to prevent anthrax infections. In the present study, DNA vaccine encoding a protective antigen of Bacillus anthracis was prepared and we investigated the influence of DNA electrotransfer in the skin on the induced immune response and biodistribution. Methods and Results: The tdTomato reporter gene for the whole animal in vivo imaging was used to assess gene transfer efficiency into the skin as a function of electrical parameters. Compared to that with 25 V, the transgene expression of red fluorescent protein increased significantly when a voltage of 90 V was used. Delivery of DNA vaccines expressing Bacillus anthracis protective antigen domain 4 (PAD4) with an applied voltage of 90 V induced robust PA-D4-specific antibody responses. In addition, the in vivo fate of anthrax DNA vaccine was studied after intradermal administration into the mouse. DNA plasmids remained at the skin injection site for an appropriate period of time after immunization. Intradermal administration of DNA vaccine resulted in detection in various organs (viz., lung, heart, kidney, spleen, brain, and liver), although the levels were significantly reduced. Conclusion: Our results offer important insights into how anthrax DNA vaccine delivery by intradermal electroporation affects the immune response and biodistribution of DNA vaccine. Therefore, it may provide valuable information for the development of effective DNA vaccines against anthrax infection.


2001 ◽  
Vol 69 (8) ◽  
pp. 4799-4807 ◽  
Author(s):  
Nancy D. Ulbrandt ◽  
David R. Cassatt ◽  
Nita K. Patel ◽  
William C. Roberts ◽  
Christine M. Bachy ◽  
...  

ABSTRACT Decorin binding protein A (DbpA) has been shown by several laboratories to be a protective antigen for the prevention of experimental Borrelia burgdorferi infection in the mouse model of Lyme borreliosis. However, different recombinant forms of the antigen having either lipidated amino termini, approximating the natural secretion and posttranslational processing, or nonprocessed cytosolic forms have elicited disparate levels of protection in the mouse model. We have now used the unique functional properties of this molecule to investigate the structural requirements needed to elicit a protective immune response. Genetic and physicochemical alterations to DbpA showed that the ability to bind to the ligand decorin is indicative of a potent immunogen but is not conclusive. By mutating the two carboxy-terminal nonconserved cysteines of DbpA from B. burgdorferi strain N40, we have determined that the stability afforded by the putative disulfide bond is essential for the generation of protective antibodies. This mutated protein was more sensitive to thermal denaturation and proteolysis, suggesting that it is in a less ordered state. Immunization with DbpA that was thermally denatured and functionally inactivated stimulated an immune response that was not protective and lacked bactericidal antibodies. Antibodies against conformationally altered forms of DbpA also failed to kill heterologous B. garinii and B. afzelii strains. Additionally, nonsecreted recombinant forms of DbpAN40were found to be inferior to secreted lipoprotein DbpAN40 in terms of functional activity and antigenic potency. These data suggest that elicitation of a bactericidal and protective immune response to DbpA requires a properly folded conformation for the production of functional antibodies.


2019 ◽  
Author(s):  
Stephanie Ascough ◽  
Rebecca J. Ingram ◽  
Karen K. Y. Chu ◽  
Stephen J. Moore ◽  
Theresa Gallagher ◽  
...  

AbstractThe causative agent of anthrax, Bacillus anthracis, evades the host immune response and establishes infection through the production of binary exotoxins composed of Protective Antigen (PA) and one of two subunits, lethal factor (LF) or edema factor (EF). The majority of vaccination strategies have focused upon the antibody response to the PA subunit. We have used a panel of humanised HLA class II transgenic mouse strains to define HLA-DR-restricted and HLA-DQ-restricted CD4+ T cell responses to the immunodominant epitopes of PA. This was correlated with the binding affinities of epitopes to HLA class II molecules, as well as the responses of two human cohorts: individuals vaccinated with the Anthrax Vaccine Precipitated (AVP) vaccine (which contains PA and trace amounts of LF), and patients recovering from cutaneous anthrax infections. The infected and vaccinated cohorts expressing different HLA types were found to make CD4+ T cell responses to multiple and diverse epitopes of PA. The effects of HLA polymorphism were explored using transgenic mouse lines, which demonstrated differential susceptibility, indicating that HLA-DR1 and HLA-DQ8 alleles conferred protective immunity relative to HLA-DR15, HLA-DR4 and HLA-DQ6. The HLA transgenics enabled a reductionist approach, allowing us to better define CD4+ T cell epitopes. Appreciating the effects of HLA polymorphism on the variability of responses to natural infection and vaccination will be vital in planning protective strategies against anthrax.Author SummaryThe bacterium responsible for causing the disease anthrax, Bacillus anthracis, produces a binary toxin composed of Protective Antigen (PA) and either Lethal Factor (LF) or Edema Factor (EF). Previous vaccination strategies have focused upon the antibody response to the PA subunit. However, within the field of bacterial immunity, there is a growing appreciation of the importance of the adaptive immune response, specifically led by CD4+ T cells. We identified long-term CD4+ T cell responses to PA epitopes following cutaneous human anthrax infection and vaccination, indicating that this toxin component is a principle B. anthracis antigen. To characterise the impact of polymorphism in HLA class II alleles at DR and DQ loci, we used transgenic mice to map the immunodominant epitopes from PA. This was correlated with survival in the transgenic lines following live anthrax challenge. We were able to demonstrate the differential impact of HLA class II alleles upon the CD4+ T cell immunodominant epitopes which shaped the immune hierarchy and therefore susceptibility to anthrax infection.


Sign in / Sign up

Export Citation Format

Share Document