scholarly journals Comparison of antioxidant enzyme activity and gene expression in two new spring wheat cultivars treated with salinity

2021 ◽  
Vol 65 ◽  
pp. 131-144
Author(s):  
Y.L. XU ◽  
Y. ZHANG ◽  
J.M. LI ◽  
T.P. GAO ◽  
L.N. ZHANG ◽  
...  
Life Sciences ◽  
2002 ◽  
Vol 71 (11) ◽  
pp. 1303-1312 ◽  
Author(s):  
Jérôme Busserolles ◽  
Wioletta Zimowska ◽  
Edmond Rock ◽  
Yves Rayssiguier ◽  
Andrzej Mazur

Agriculture ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 1200
Author(s):  
Di Zhang ◽  
Hanguo Zeng ◽  
Liyuan Zhao ◽  
Jiaming Yue ◽  
Xiao Qi ◽  
...  

The goal of this study was to identify the zoysiagrass rust pathogens and to analyze the differences in rust-resistant and rust-susceptible Zoysia japonica germplasm upon inoculation. Based on the assessment of spore morphology and 18S ribosomal DNA (rDNA) molecular identification, the zoysiagrass rust pathogen was identified as Puccinia zoysiae Diet. The development of mycelium, the rate of spreading, and the timing of spore production were more delayed in the rust-resistant (RR) genotype than the rust-susceptible (RS) genotype. After inoculation, the activities of superoxide dismutase (SOD), catalase (CAT), and ascorbate peroxidase (APX) initially decreased, then increased in both the RR and RS genotypes, but the increased enzyme activities were faster in the RR than in the RS genotype. Rust resistance was positively correlated with antioxidant enzyme activity. The observed changes in CAT, POD and APX activity corresponded to their gene expression levels. The results of this study may be utilized in accurately evaluating the damage of rust disease and rust-resistance in zoysiagrass germplasm aimed at breeding the rust-resistant zoysiagrass varieties and improving disease management of zoysiagrass turf.


Ecotoxicology ◽  
2018 ◽  
Vol 27 (10) ◽  
pp. 1323-1330 ◽  
Author(s):  
Yanhong Lou ◽  
Rui Guan ◽  
Mingjie Sun ◽  
Fei Han ◽  
Wei He ◽  
...  

2013 ◽  
Vol 61 (1) ◽  
pp. 79-87 ◽  
Author(s):  
N. Sajedi ◽  
M. Boojar

In the present study, three dry land wheat cultivars, Azar 2, Sardary and Rasad, were tested for antioxidant enzyme activity, proline, malondialdehyde (MDA) and dityrosine (DT) content and grain yield after treatment with selenium and salicylic acid (SA). A factorial field experiment was carried out based on a completely randomized block design with three replicates. The experimental factors were three levels of salicylic acid (without SA; seed priming with 0.5 mM SA; seed priming + spraying with 1 mM SA) and two levels of selenium (0 and 20 g/ha). Significant increases in the activity of the superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GPX) enzymes and in the proline level were observed after treatment in the leaves of the three genotypes investigated, but this was associated with reduced MDA and DT content. The application of SA as seed priming and the foliar application of Se also increased the grain yield. These results suggest that cultivars exhibiting high antioxidant enzyme activity and proline content under dry land conditions may provide better drought tolerance in wheat.


Sign in / Sign up

Export Citation Format

Share Document