scholarly journals An Efficient Clustering Approach for Automatic Detection of Calcification in Low Dose Chest CT

Author(s):  
P. Tamijiselvy ◽  
N. Kavitha ◽  
K. M. Keerthana ◽  
D. Menakha

The degree of aortic calcification has been appeared to be a risk pointer for vascular occasions including cardiovascular events. The created strategy is fully automated data mining algorithm to segment and measure calcification using Low-dose Chest CT in smokers of age 50 to 70 .The identification of subjects with increased cardiovascular risk can be detected by using data mining algorithms. This paper presents a method for automatic detection of coronary artery calcifications in low-dose chest CT scans using effective clustering algorithms with three phases as Pre-Processing, Segmentation and clustering. Fuzzy C Means algorithm provides accuracy of 80.23% demonstrate that Fuzzy C means detects the Cardio Vascular Disease at early stage.

The exponential increase in universities’ electronic data creates the need to derive some useful information from these massive amounts of data. The progression in the data mining field causes it conceivable to educational data to improve the nature of educational processes. This study, thus, uses data mining methods to study the learning behavior and performance of university students. It focused on two aspects of the performance of the students. First, predicting students' learning behavior at the end of a complete year of the study program. Second, predict student performance with the help of the data model proposed by this study. Finally, provide course material recommendations using the data mining algorithm. Three data mining algorithms were considered which are K-Means, FCM, and KFCM., and maximum accuracy of 90.22% was achieved by KFCM. The study indicates that in terms of time and memory usages K-means algorithm give better results. This creates an opportunity for identifying students that may graduate with poor results or may not graduate at all, so early intercession might be possible.


Author(s):  
M. LAST ◽  
M. FRIEDMAN ◽  
A. KANDEL

In today's software industry, the design of test cases is mostly based on human expertise, while test automation tools are limited to execution of pre-planned tests only. Evaluation of test outcomes is also associated with a considerable effort by human testers who often have imperfect knowledge of the requirements specification. Not surprisingly, this manual approach to software testing results in heavy losses to the world's economy. In this paper, we demonstrate the potential use of data mining algorithms for automated modeling of tested systems. The data mining models can be utilized for recovering system requirements, designing a minimal set of regression tests, and evaluating the correctness of software outputs. To study the feasibility of the proposed approach, we have applied a state-of-the-art data mining algorithm called Info-Fuzzy Network (IFN) to execution data of a complex mathematical package. The IFN method has shown a clear capability to identify faults in the tested program.


Author(s):  
G. Ramadevi ◽  
Srujitha Yeruva ◽  
P. Sravanthi ◽  
P. Eknath Vamsi ◽  
S. Jaya Prakash

In a digitized world, data is growing exponentially and it is difficult to analyze the data and give the results. Data mining techniques play an important role in healthcare sector - BigData. By making use of Data mining algorithms it is possible to analyze, detect and predict the presence of disease which helps doctors to detect the disease early and in decision making. The objective of data mining techniques used is to design an automated tool that notifies the patient’s treatment history disease and medical data to doctors. Data mining techniques are very much useful in analyzing medical data to achieve meaningful and practical patterns. This project works on diabetes medical data, classification and clustering algorithms like (OPTICS, NAIVEBAYES, and BRICH) are implemented and the efficiency of the same is examined.


Author(s):  
Ari Fadli ◽  
Azis Wisnu Widhi Nugraha ◽  
Muhammad Syaiful Aliim ◽  
Acep Taryana ◽  
Yogiek Indra Kurniawan ◽  
...  

Author(s):  
Efat Jabarpour ◽  
Amin Abedini ◽  
Abbasali Keshtkar

Introduction: Osteoporosis is a disease that reduces bone density and loses the quality of bone microstructure leading to an increased risk of fractures. It is one of the major causes of inability and death in elderly people. The current study aims at determining the factors influencing the incidence of osteoporosis and providing a predictive model for the disease diagnosis to increase the diagnostic speed and reduce diagnostic costs. Methods: An Individual's data including personal information, lifestyle, and disease information were reviewed. A new model has been presented based on the Cross-Industry Standard Process CRISP methodology. Besides, Support Vector Machine (SVM) and Bayes methods (Tree Augmented Naïve Bayes (TAN)) and Clementine12 have been used as data mining tools. Results: Some features have been detected to affect this disease. The rules have been extracted that can be used as a pattern for the prediction of the patients' status. Classification precision was calculated to be 88.39% for SVM, and 91.29% for  (TAN) when the precision of  TAN  is higher comparing to other methods. Conclusion: The most effective factors concerning osteoporosis are detected and can be used for a new sample with defined characteristics to predict the possibility of osteoporosis in a person.  


Sign in / Sign up

Export Citation Format

Share Document