An Efficient Clustering Approach for Automatic Detection of Calcification in Low Dose Chest CT
The degree of aortic calcification has been appeared to be a risk pointer for vascular occasions including cardiovascular events. The created strategy is fully automated data mining algorithm to segment and measure calcification using Low-dose Chest CT in smokers of age 50 to 70 .The identification of subjects with increased cardiovascular risk can be detected by using data mining algorithms. This paper presents a method for automatic detection of coronary artery calcifications in low-dose chest CT scans using effective clustering algorithms with three phases as Pre-Processing, Segmentation and clustering. Fuzzy C Means algorithm provides accuracy of 80.23% demonstrate that Fuzzy C means detects the Cardio Vascular Disease at early stage.