social media analytics
Recently Published Documents


TOTAL DOCUMENTS

498
(FIVE YEARS 380)

H-INDEX

23
(FIVE YEARS 15)

2022 ◽  
Vol 11 (2) ◽  
pp. 1-15
Author(s):  
Ravindra Kumar Singh ◽  
Harsh Kumar Verma

Twitter has gained a significant prevalence among the users across the numerous domains, in the majority of the countries, and among different age groups. It servers a real-time micro-blogging service for communication and opinion sharing. Twitter is sharing its data for research and study purposes by exposing open APIs that make it the most suitable source of data for social media analytics. Applying data mining and machine learning techniques on tweets is gaining more and more interest. The most prominent enigma in social media analytics is to automatically identify and rank influencers. This research is aimed to detect the user's topics of interest in social media and rank them based on specific topics, domains, etc. Few hybrid parameters are also distinguished in this research based on the post's content, post’s metadata, user’s profile, and user's network feature to capture different aspects of being influential and used in the ranking algorithm. Results concluded that the proposed approach is well effective in both the classification and ranking of individuals in a cluster.


2022 ◽  
Vol 11 (2) ◽  
pp. 0-0

Twitter has gained a significant prevalence among the users across the numerous domains, in the majority of the countries, and among different age groups. It servers a real-time micro-blogging service for communication and opinion sharing. Twitter is sharing its data for research and study purposes by exposing open APIs that make it the most suitable source of data for social media analytics. Applying data mining and machine learning techniques on tweets is gaining more and more interest. The most prominent enigma in social media analytics is to automatically identify and rank influencers. This research is aimed to detect the user's topics of interest in social media and rank them based on specific topics, domains, etc. Few hybrid parameters are also distinguished in this research based on the post's content, post’s metadata, user’s profile, and user's network feature to capture different aspects of being influential and used in the ranking algorithm. Results concluded that the proposed approach is well effective in both the classification and ranking of individuals in a cluster.


2022 ◽  
Vol 3 (1) ◽  
pp. 1-28
Author(s):  
Giorgio Grani ◽  
Andrea Lenzi ◽  
Paola Velardi

Social media analytics can considerably contribute to understanding health conditions beyond clinical practice, by capturing patients’ discussions and feelings about their quality of life in relation to disease treatments. In this article, we propose a methodology to support a detailed analysis of the therapeutic experience in patients affected by a specific disease, as it emerges from health forums. As a use case to test the proposed methodology, we analyze the experience of patients affected by hypothyroidism and their reactions to standard therapies. Our approach is based on a data extraction and filtering pipeline, a novel topic detection model named Generative Text Compression with Agglomerative Clustering Summarization ( GTCACS ), and an in-depth data analytic process. We advance the state of the art on automated detection of adverse drug reactions ( ADRs ) since, rather than simply detecting and classifying positive or negative reactions to a therapy, we are capable of providing a fine characterization of patients along different dimensions, such as co-morbidities, symptoms, and emotional states.


2022 ◽  
Vol 14 (2) ◽  
pp. 810
Author(s):  
Tan Yigitcanlar ◽  
Massimo Regona ◽  
Nayomi Kankanamge ◽  
Rashid Mehmood ◽  
Justin D’Costa ◽  
...  

Natural hazard-related disasters are disruptive events with significant impact on people, communities, buildings, infrastructure, animals, agriculture, and environmental assets. The exponentially increasing anthropogenic activities on the planet have aggregated the climate change and consequently increased the frequency and severity of these natural hazard-related disasters, and consequential damages in cities. The digital technological advancements, such as monitoring systems based on fusion of sensors and machine learning, in early detection, warning and disaster response systems are being implemented as part of the disaster management practice in many countries and presented useful results. Along with these promising technologies, crowdsourced social media disaster big data analytics has also started to be utilized. This study aims to form an understanding of how social media analytics can be utilized to assist government authorities in estimating the damages linked to natural hazard-related disaster impacts on urban centers in the age of climate change. To this end, this study analyzes crowdsourced disaster big data from Twitter users in the testbed case study of Australian states and territories. The methodological approach of this study employs the social media analytics method and conducts sentiment and content analyses of location-based Twitter messages (n = 131,673) from Australia. The study informs authorities on an innovative way to analyze the geographic distribution, occurrence frequency of various disasters and their damages based on the geo-tweets analysis.


Author(s):  
Massimo Regona ◽  
Tan Yigitcanlar ◽  
Bo Xia ◽  
Rita Yi Man Li

Artificial intelligence (AI) is a powerful technology that can be utilized throughout a construction project lifecycle. Transition to incorporate AI technologies in the construction industry has been delayed due to the lack of know-how and research. There is also a knowledge gap regarding how the public perceives AI technologies, their areas of application, prospects, and constraints in the construction industry. This study aims to explore AI technology adoption prospects and constraints in the Australian construction industry by analyzing social media data. This study adopted social media analytics, along with sentiment and content analyses of Twitter messages (n = 7906), as the methodological approach. The results revealed that: (a) robotics, internet-of-things, and machine learning are the most popular AI technologies in Australia; (b) Australian public sentiments toward AI are mostly positive, whilst some negative perceptions exist; (c) there are distinctive views on the opportunities and constraints of AI among the Australian states/territories; (d) timesaving, innovation, and digitalization are the most common AI prospects; and (e) project risk, security of data, and lack of capabilities are the most common AI constraints. This study is the first to explore AI technology adoption prospects and constraints in the Australian construction industry by analyzing social media data. The findings inform the construction industry on public perceptions and prospects and constraints of AI adoption. In addition, it advocates the search for finding the most efficient means to utilize AI technologies. The study helps public perceptions and prospects and constraints of AI adoption to be factored in construction industry technology adoption.


2022 ◽  
Vol 2022 ◽  
pp. 1-24
Author(s):  
Anwar Ali Yahya ◽  
Yousef Asiri ◽  
Ibrahim Alyami

Epilepsy is a common neurological disorder worldwide and antiepileptic drug (AED) therapy is the cornerstone of its treatment. It has a laudable aim of achieving seizure freedom with minimal, if any, adverse drug reactions (ADRs). Too often, AED treatment is a long-lasting journey, in which ADRs have a crucial role in its administration. Therefore, from a pharmacovigilance perspective, detecting the ADRs of AEDs is a task of utmost importance. Typically, this task is accomplished by analyzing relevant data from spontaneous reporting systems. Despite their wide adoption for pharmacovigilance activities, the passiveness and high underreporting ratio associated with spontaneous reporting systems have encouraged the consideration of other data sources such as electronic health databases and pharmaceutical databases. Social media is the most recent alternative data source with many promising potentials to overcome the shortcomings of traditional data sources. Although in the literature some attempts have investigated the validity and utility of social media for ADR detection of different groups of drugs, none of them was dedicated to the ADRs of AEDs. Hence, this paper presents a novel investigation of the validity and utility of social media as an alternative data source for the detection of AED ADRs. To this end, a dataset of consumer reviews from two online health communities has been collected. The dataset is preprocessed; the unigram, bigram, and trigram are generated; and the ADRs of each AED are extracted with the aid of consumer health vocabulary and ADR lexicon. Three widely used measures, namely, proportional reporting ratio, reporting odds ratio, and information component, are used to measure the association between each ADR and AED. The resulting list of signaled ADRs for each AED is validated against a widely used ADR database, called Side Effect Resource, in terms of the precision of ADR detection. The validation results indicate the validity of online health community data for the detection of AED ADRs. Furthermore, the lists of signaled AED ADRs are analyzed to answer questions related to the common ADRs of AEDs and the similarities between AEDs in terms of their signaled ADRs. The consistency of the drawn answers with the existing pharmaceutical knowledge suggests the utility of the data from online health communities for AED-related knowledge discovery tasks.


2022 ◽  
pp. 385-410
Author(s):  
Časlav Kalinić ◽  
Miroslav D. Vujičić

The rise of social media allowed greater people participation online. Platforms such as Facebook, Twitter, Instagram, or TikTok enable visitors to share their thoughts, opinions, photos, locations. All those interactions create a vast amount of data. Social media analytics, as a way of application of big data, can provide excellent insights and create new information for stakeholders involved in the management and development of cultural tourism destinations. This chapter advocates for the employment of the big data concept through social media analytics that can contribute to the management of visitors in cultural tourism destinations. In this chapter, the authors highlight the principles of big data and review the most influential social media platforms – Facebook, Twitter, Instagram, and TikTok. On that basis, they disclose opportunities for the management and marketing of cultural tourism destinations.


Sign in / Sign up

Export Citation Format

Share Document