scholarly journals SEO Ministration : Content Related Tag Suggestion Using One vs Rest

Author(s):  
Dyapa Sravan Reddy ◽  
Lakshmi Prasanna Reddy ◽  
Kandibanda Sai Santhosh ◽  
Virrat Devaser

SEO Analyst pays a lot of time finding relevant tags for their articles and in some cases, they are unaware of the content topics. The current proposed ML model will recommend content-related tags so that the Content writers/SEO analyst will be having an overview regarding the content and minimizes their time spent on unknown articles. Machine Learning algorithms have a plethora of applications and the extent of their real-life implementations cannot be estimated. Using algorithms like One vs Rest (OVR), Long Short-Term Memory (LSTM), this study has analyzed how Machine Learning can be useful for tag suggestions for a topic. The training of the model with One vs Rest turned out to deliver more accurate results than others. This Study certainly answers how One vs Rest is used for tag suggestions that are needed to promote a website and further studies are required to suggest keywords required.

2022 ◽  
Vol 2161 (1) ◽  
pp. 012055
Author(s):  
H O Lekshmy ◽  
Dhanyalaxmi Panickar ◽  
Sandhya Harikumar

Abstract Epilepsy is a common neurological disease that affects more than 2 percent of the population globally. An imbalance in brain electrical activities causes unpredictable seizures, which eventually leads to epilepsy. Neurostimulators have the power to intervene in advance and avoid the occurrence of seizures. Its efficiency can be increased with the help of heuristics like advanced seizure prediction. Early identification of preictal state will help easy activation of neurostimulator on time. This research concentrates on the performance analysis of various machine learning algorithms on recorded EEG data. Through this study, we aim to find the best model, which can be used to create an ensemble model for better learning. This involves modeling and simulation of classical machine learning technique like Logistic regression, Naive Bayes model, K nearest neighbors Random Forest, and deep learning techniques like an Artificial neural network, Convolutional neural networks, Long short term memory, and Autoencoders. In this analysis, Random Forest and Long Short-Term Memory performed well among all models in terms of sensitivity and specificity.


2021 ◽  
Vol 7 ◽  
pp. e645
Author(s):  
Ramish Jamil ◽  
Imran Ashraf ◽  
Furqan Rustam ◽  
Eysha Saad ◽  
Arif Mehmood ◽  
...  

Sarcasm emerges as a common phenomenon across social networking sites because people express their negative thoughts, hatred and opinions using positive vocabulary which makes it a challenging task to detect sarcasm. Although various studies have investigated the sarcasm detection on baseline datasets, this work is the first to detect sarcasm from a multi-domain dataset that is constructed by combining Twitter and News Headlines datasets. This study proposes a hybrid approach where the convolutional neural networks (CNN) are used for feature extraction while the long short-term memory (LSTM) is trained and tested on those features. For performance analysis, several machine learning algorithms such as random forest, support vector classifier, extra tree classifier and decision tree are used. The performance of both the proposed model and machine learning algorithms is analyzed using the term frequency-inverse document frequency, bag of words approach, and global vectors for word representations. Experimental results indicate that the proposed model surpasses the performance of the traditional machine learning algorithms with an accuracy of 91.60%. Several state-of-the-art approaches for sarcasm detection are compared with the proposed model and results suggest that the proposed model outperforms these approaches concerning the precision, recall and F1 scores. The proposed model is accurate, robust, and performs sarcasm detection on a multi-domain dataset.


2021 ◽  
pp. 016555152110077
Author(s):  
Şura Genç ◽  
Elif Surer

Clickbait is a strategy that aims to attract people’s attention and direct them to specific content. Clickbait titles, created by the information that is not included in the main content or using intriguing expressions with various text-related features, have become very popular, especially in social media. This study expands the Turkish clickbait dataset that we had constructed for clickbait detection in our proof-of-concept study, written in Turkish. We achieve a 48,060 sample size by adding 8859 tweets and release a publicly available dataset – ClickbaitTR – with its open-source data analysis library. We apply machine learning algorithms such as Artificial Neural Network (ANN), Logistic Regression, Random Forest, Long Short-Term Memory Network (LSTM), Bidirectional Long Short-Term Memory (BiLSTM) and Ensemble Classifier on 48,060 news headlines extracted from Twitter. The results show that the Logistic Regression algorithm has 85% accuracy; the Random Forest algorithm has a performance of 86% accuracy; the LSTM has 93% accuracy; the ANN has 93% accuracy; the Ensemble Classifier has 93% accuracy; and finally, the BiLSTM has 97% accuracy. A thorough discussion is provided for the psychological aspects of clickbait strategy focusing on curiosity and interest arousal. In addition to a successful clickbait detection performance and the detailed analysis of clickbait sentences in terms of language and psychological aspects, this study also contributes to clickbait detection studies with the largest clickbait dataset in Turkish.


2021 ◽  
Author(s):  
Hyeon Kang ◽  
Kyung Won Park ◽  
Do-Young Kang

Abstract Single amyloid-beta (Aβ) imaging test is not enough to rise to the challenge of making AD diagnosis because of Aβ-negative AD or positive cognitively normal (CN). We aimed to distinguish AD from CN with dual-phase 18F-Florbetaben (FBB) via machine learning algorithms and evaluate the AD positivity scores compared to delay-phase FBB (dFBB) which is currently adopted for AD diagnosis.A total of 264 patients (74 CN and 190 AD), who underwent FBB imaging test and neuropsychological tests were retrospectively analyzed. We compared three kinds of machine learning-based models and evaluated their performance with 4-fold cross validation.AD positivity scores estimated from dual-phase FBB showed better accuracy (ACC) and area under the receiver operating characteristic curve (AUROC) for AD detection (ACC: 84.091 %, AUROC: 0.900) than those from dFBB imaging (ACC: 81.364 %, AUROC: 0.890). The association between predicted AD positivity and the AD occurrence were compared, the use of dual-phase FBB was highest (OR: 56.333), followed by dFBB (OR: 35.182).These results show that the combined model which interpret dual-phase FBB with long short-term memory can be used to provide a more accurate AD positivity score, which shows a closer association with AD, than the prediction with only single-phase FBB.


2020 ◽  
Vol 12 (11) ◽  
pp. 4471 ◽  
Author(s):  
Jack Ngarambe ◽  
Amina Irakoze ◽  
Geun Young Yun ◽  
Gon Kim

The performance of machine learning (ML) algorithms depends on the nature of the problem at hand. ML-based modeling, therefore, should employ suitable algorithms where optimum results are desired. The purpose of the current study was to explore the potential applications of ML algorithms in modeling daylight in indoor spaces and ultimately identify the optimum algorithm. We thus developed and compared the performance of four common ML algorithms: generalized linear models, deep neural networks, random forest, and gradient boosting models in predicting the distribution of indoor daylight illuminances. We found that deep neural networks, which showed a determination of coefficient (R2) of 0.99, outperformed the other algorithms. Additionally, we explored the use of long short-term memory to forecast the distribution of daylight at a particular future time. Our results show that long short-term memory is accurate and reliable (R2 = 0.92). Our findings provide a basis for discussions on ML algorithms’ use in modeling daylight in indoor spaces, which may ultimately result in efficient tools for estimating daylight performance in the primary stages of building design and daylight control schemes for energy efficiency.


Abstract. Predictive models are important to help manage high-value assets and to ensure optimal and safe operations. Recently, advanced machine learning algorithms have been applied to solve practical and complex problems, and are of significant interest due to their ability to adaptively ‘learn’ in response to changing environments. This paper reports on the data preparation strategies and the development and predictive capability of a Long Short-Term Memory recurrent neural network model for anaerobic reactors employed at Melbourne Water’s Western Treatment Plant for sewage treatment that includes biogas harvesting. The results show rapid training and higher accuracy in predicting biogas production when historical data, which include significant outliers, are preprocessed with z-score standardisation in comparison to those with max-min normalisation. Furthermore, a trained model with a reduced number of input variables via the feature selection technique based on Pearson’s correlation coefficient is found to yield good performance given sufficient dataset training. It is shown that the overall best performance model comprises the reduced input variables and data processed with z-score standardisation. This initial study provides a useful guide for the implementation of machine learning techniques to develop smarter structures and management towards Industry 4.0 concepts.


Complexity ◽  
2020 ◽  
Vol 2020 ◽  
pp. 1-14
Author(s):  
Md. Rashadur Rahman ◽  
Mohammad Shamsul Arefin ◽  
Md. Billal Hossain ◽  
Mohammad Ashfak Habib ◽  
A. S. M. Kayes

The most prominent form of human communication and interaction is speech. It plays an indispensable role for expressing emotions, motivating, guiding, and cheering. An ill-intentioned speech can mislead people, societies, and even a nation. A misguided speech can trigger social controversy and can result in violent activities. Every day, there are a lot of speeches being delivered around the world, which are quite impractical to inspect manually. In order to prevent any vicious action resulting from any misguided speech, the development of an automatic system that can efficiently detect suspicious speech has become imperative. In this study, we have presented a framework for acquisition of speech along with the location of the speaker, converting the speeches into texts and, finally, we have proposed a system based on long short-term memory (LSTM) which is a variant of recurrent neural network (RNN) to classify speeches into suspicious and nonsuspicious. We have considered speeches of Bangla language and developed our own dataset that contains about 5000 suspicious and nonsuspicious samples for training and validating our model. A comparative analysis of accuracy among other machine learning algorithms such as logistic regression, SVM, KNN, Naive Bayes, and decision tree is performed in order to evaluate the effectiveness of the system. The experimental results show that our proposed deep learning-based model provides the highest accuracy compared to other algorithms.


2020 ◽  
Vol 12 (2) ◽  
pp. 84-99
Author(s):  
Li-Pang Chen

In this paper, we investigate analysis and prediction of the time-dependent data. We focus our attention on four different stocks are selected from Yahoo Finance historical database. To build up models and predict the future stock price, we consider three different machine learning techniques including Long Short-Term Memory (LSTM), Convolutional Neural Networks (CNN) and Support Vector Regression (SVR). By treating close price, open price, daily low, daily high, adjusted close price, and volume of trades as predictors in machine learning methods, it can be shown that the prediction accuracy is improved.


Sensors ◽  
2021 ◽  
Vol 21 (11) ◽  
pp. 3678
Author(s):  
Dongwon Lee ◽  
Minji Choi ◽  
Joohyun Lee

In this paper, we propose a prediction algorithm, the combination of Long Short-Term Memory (LSTM) and attention model, based on machine learning models to predict the vision coordinates when watching 360-degree videos in a Virtual Reality (VR) or Augmented Reality (AR) system. Predicting the vision coordinates while video streaming is important when the network condition is degraded. However, the traditional prediction models such as Moving Average (MA) and Autoregression Moving Average (ARMA) are linear so they cannot consider the nonlinear relationship. Therefore, machine learning models based on deep learning are recently used for nonlinear predictions. We use the Long Short-Term Memory (LSTM) and Gated Recurrent Unit (GRU) neural network methods, originated in Recurrent Neural Networks (RNN), and predict the head position in the 360-degree videos. Therefore, we adopt the attention model to LSTM to make more accurate results. We also compare the performance of the proposed model with the other machine learning models such as Multi-Layer Perceptron (MLP) and RNN using the root mean squared error (RMSE) of predicted and real coordinates. We demonstrate that our model can predict the vision coordinates more accurately than the other models in various videos.


2021 ◽  
pp. 016555152110065
Author(s):  
Rahma Alahmary ◽  
Hmood Al-Dossari

Sentiment analysis (SA) aims to extract users’ opinions automatically from their posts and comments. Almost all prior works have used machine learning algorithms. Recently, SA research has shown promising performance in using the deep learning approach. However, deep learning is greedy and requires large datasets to learn, so it takes more time for data annotation. In this research, we proposed a semiautomatic approach using Naïve Bayes (NB) to annotate a new dataset in order to reduce the human effort and time spent on the annotation process. We created a dataset for the purpose of training and testing the classifier by collecting Saudi dialect tweets. The dataset produced from the semiautomatic model was then used to train and test deep learning classifiers to perform Saudi dialect SA. The accuracy achieved by the NB classifier was 83%. The trained semiautomatic model was used to annotate the new dataset before it was fed into the deep learning classifiers. The three deep learning classifiers tested in this research were convolutional neural network (CNN), long short-term memory (LSTM) and bidirectional long short-term memory (Bi-LSTM). Support vector machine (SVM) was used as the baseline for comparison. Overall, the performance of the deep learning classifiers exceeded that of SVM. The results showed that CNN reported the highest performance. On one hand, the performance of Bi-LSTM was higher than that of LSTM and SVM, and, on the other hand, the performance of LSTM was higher than that of SVM. The proposed semiautomatic annotation approach is usable and promising to increase speed and save time and effort in the annotation process.


Sign in / Sign up

Export Citation Format

Share Document