scholarly journals Comparison of Fatigue Life Cycle of Different Aluminium Alloy AA 5083 - AA6062

Author(s):  
Sunit Yadav ◽  
Kamal Kanaujia ◽  
Ravi Shukla

Fatigue failure is one of the main reasons for the mechanical failure in engineering materials. To improve the fatigue strength of the material one of the most used method is surface treatment of the materials in which hardness, wear resistance and aesthetics is improved. In this paper a comparative study of fatigue of two different aluminium alloy [AA 5083-AA6062] was conducted. CT specimen of both the alloys was formed as per ASTM-E647 Standard. The result shows that the fatigue life of AA5083 greater than AA6062. In this paper fracture that occur in material during fatigue testing and effect of fatigue life on material is studied. The main purpose of the research presented herein was to study the fatigue crack propagation under loading mode I.


2017 ◽  
Vol 79 (5-2) ◽  
Author(s):  
Mohammad Khalid Wahid ◽  
Muhammad Nabil Muhammed Sufian ◽  
Mohamed Saiful Firdaus Hussin

Spot welding is mainly used method in joining sheet metals for body structure in automotive industry. The comprehension of the fatigue strength for the spot welds is very critical in automotive component design. Parameter for the resistance spot welding and fatigue machines is constant for each specimen used. The S-N curve is obtained from the fatigue testing for each specimen. This experiment parameters are varies the different thickness and different material combination in spot welding structure to investigate the fatigue life cycle and fatigue stress. For 1050A aluminium joint, fatigue life cycle and fatigue strength will decrease from number of cycle 500 at 16.58 MPa to number of cycle 61 at 6.62 MPa as the thickness increase. The fatigue life cycle and fatigue stress for galvanized iron will increase from number of cycle  46 at 9.25 MPa to number of cycle  1500 at 57.8 MPa when the thickness of joint increase. The finding from the combination of 1050A aluminum and galvanized iron on spot welded structure has shown no improvement in term of fatigue life cycle and fatigue strength because specimens experienced failure at number of cycle 19 with fatigue stress 2.36 MPa.



Author(s):  
Samatham Madhukarϯ ◽  
Birudala Raga Harshith Reddy ◽  
Gyara Ajay Kumar ◽  
Ramawath Prashanth Naikϯ

Fatigue failure is one of the main reasons for the mechanical failure in engineering materials. To improve the fatigue strength of the material one of the most used method is surface treatment of the materials in which hardness, wear resistance and aesthetics is improved. In this paper the different methods of surface coatings, types of fractures that occur in the material during fatigue testing and effect of the fatigue life on the material is studied



Author(s):  
Yuriy Kudryavtsev ◽  
Jacob Kleiman

The ultrasonic impact treatment (UIT) is relatively new and promising process for fatigue life improvement of welded elements and structures. In most industrial applications this process is known as ultrasonic peening (UP). The beneficial effect of UIT/UP is achieved mainly by relieving of harmful tensile residual stresses and introducing of compressive residual stresses into surface layers of a material, decreasing of stress concentration in weld toe zones and enhancement of mechanical properties of the surface layers of the material. The UP technique is based on the combined effect of high frequency impacts of special strikers and ultrasonic oscillations in treated material. Fatigue testing of welded specimens showed that UP is the most efficient improvement treatment as compared with traditional techniques such as grinding, TIG-dressing, heat treatment, hammer peening and application of LTT electrodes. The developed computerized complex for UP was successfully applied for increasing the fatigue life and corrosion resistance of welded elements, elimination of distortions caused by welding and other technological processes, residual stress relieving, increasing of the hardness of the surface of materials. The UP could be effectively applied for fatigue life improvement during manufacturing, rehabilitation and repair of welded elements and structures. The areas/industries where the UP process was applied successfully include: Shipbuilding, Railway and Highway Bridges, Construction Equipment, Mining, Automotive, Aerospace. The results of fatigue testing of welded elements in as-welded condition and after application of UP are considered in this paper. It is shown that UP is the most effective and economic technique for increasing of fatigue strength of welded elements in materials of different strength. These results also show a strong tendency of increasing of fatigue strength of welded elements after application of UP with the increase in mechanical properties of the material used.



2013 ◽  
Vol 577-578 ◽  
pp. 429-432 ◽  
Author(s):  
Yukio Miyashita ◽  
Kyohei Kushihata ◽  
Toshifumi Kakiuchi ◽  
Mitsuhiro Kiyohara

Fatigue Property of an Extruded AZ61 Magnesium Alloy with the Processing Layer Introduced by Machining was Investigated. Rotating Bending Fatigue Tests were Carried out with the Specimen with and without the Processing Layer. According to Results of the Fatigue Tests, Fatigue Life Significantly Increased by Introducing the Processing Layer to the Specimen Surface. Fatigue Crack Initiation and Propagation Behaviors were Observed by Replication Technique during the Fatigue Test. Fatigue Crack Initiation Life of the Specimen with the Processing Layer was Slightly Longer than that of the Specimen without the Processing Layer. Higher Fatigue Crack Growth Resistance was also Observed when the Fatigue Crack was Growing in the Processing Layer in the Specimen with the Processing Layer. the Longer Fatigue Life Observed in the Fatigue Test in the Specimen with the Processing Layer could be Mainly due to the Higher Crack Growth Resistance. it is Speculated that the Fatigue Strength can be Controlled by Change in Condition of Machining Process. it could be Effective way in Industry to Improved Fatigue Strength only by the Cutting Process without Additional Surface Treatment Process.



2017 ◽  
Vol 13 (3) ◽  
pp. 91-99 ◽  
Author(s):  
Hussain J. M Alalkawi ◽  
Aseel A. Hamdany ◽  
Abbas Ahmed Alasadi

Abstract      In this investigation, Al2O3 nano material of 50nm particles size were added to the 6061 Al aluminium alloy by using the stir casting technique to fabricate the nanocomposite of 10wt% Al2O3. The experimental results observed that the addition of 10wt% Al2O3 improved the fatigue life and strength of constant and cumulative fatigue. Comparison between the S-N curves behaviour of metal matrix (AA6061) and the nanocomposite 10wt% Al2O3 has been made. The comparison revealed that 12.8% enhancement in fatigue strength at 107cycles due to 10wt% nano reinforcement. Also cumulative fatigue life of 10wt% nanocomposite was found to be increased by 33.37% and 39.58% for low-high and high-low loading sequences, respectively, compared to the metal-matrix cumulative life. Keywords: Al2O3 nanoparticles, AA6061/10wt%, constant and cumulative fatigue, MMCs.



2020 ◽  
Vol 65 (4) ◽  
pp. 179-190
Author(s):  
Yuir Kudryavtsev

The ultrasonic impact treatment (UIT) is relatively new and promising process for fatigue life improvement of welded elements and structures. In most industrial applications this process is known as ultrasonic peening (UP). The beneficial effect of UIT/UP is achieved mainly by relieving of tensile residual stresses and introducing of compressive residual stresses into surface layers of a material. The secondary factors in fatigue improvement by UIT/UP are decreasing of stress concentration in weld toe zones and enhancement of mechanical properties of the surface layers of the material. Fatigue testing of welded specimens showed that UIT/UP is the most efficient improvement treatment as compared with traditional techniques such as grinding, TIG-dressing, heat treatment, hammer peening and application of LTT electrodes. The developed computerized complex for UIT/UP was successfully applied for increasing the fatigue life and corrosion resistance of welded elements, elimination of distortions caused by welding and other technological processes, residual stress relieving, increasing of the hardness of the surface of materials. The results of fatigue testing of large-scale welded specimens in as-welded condition and after application of UIT/UP are considered in this paper. It is shown that UIT/UP is the most effective and economic technique for increasing of fatigue strength of welded elements in materials of different strength. These results also show a strong tendency of increasing of fatigue strength of welded elements after application of UP with the increase in mechanical properties of the material used.



2016 ◽  
Vol 10 (38) ◽  
pp. 148-154 ◽  
Author(s):  
Xiaobo Yu ◽  
Ling Li ◽  
Gwenaelle Proust


1955 ◽  
Vol 59 (535) ◽  
pp. 502-506 ◽  
Author(s):  
A. C. Low

The work described was undertaken under a Ministry of Supply Contract to investigate the fatigue strength of certain materials where the expected endurance in use was less than the range of values usually examined in fatigue testing.The material was supplied in the form of a 6 ft. x 3 ft. x 1/4 in. sheet of aluminium alloy MG5.Tensile test pieces having a parallel length one inch wide by 4 1/2 in. long were taken in both directions from two diagonally opposite corners of the sheet. Later, similar longitudinal test pieces were taken from areas near the other two corners.The plane bending fatigue test pieces were of the form shown in Fig. 1 and were all cut in the longitudinal direction. The waisted test portion was polished on the edges, the original sheet surface being retained on the faces. Steel plates were clamped to the ends of the test pieces by bolts passing through the holes in order to localise the strain in the test portion as much as possible.



Author(s):  
Yuri Kudryavtsev ◽  
Jacob Kleiman

The ultrasonic impact treatment (UIT) is relatively new and promising process for fatigue life improvement of welded elements and structures. In most industrial applications this process is known as ultrasonic peening (UP). The beneficial effect of UP is achieved mainly by relieving of tensile residual stresses and introducing of compressive residual stresses into surface layers of a material. The secondary factors in fatigue improvement by UP are decreasing of stress concentration in weld toe zones and enhancement of mechanical properties of the surface layers of the material. Fatigue testing of welded specimens showed that UP is the most efficient improvement treatment as compared with traditional techniques such as grinding, TIG-dressing, heat treatment, hammer peening and application of LTT electrodes. The developed computerized complex for UP was successfully applied for increasing the fatigue life and corrosion resistance of welded elements, elimination of distortions caused by welding and other technological processes, residual stress relieving, increasing of the hardness of the surface of materials. The UP could be effectively applied for fatigue life improvement during manufacturing, rehabilitation and repair of welded elements and structures. The areas/industries where the UP process was applied successfully include: Shipbuilding, Railway and Highway Bridges, Construction Equipment, Mining, Automotive, Aerospace. The results of fatigue testing of welded elements in as-welded condition and after application of UP are considered in this paper. It is shown that UP is the most effective and economic technique for increasing of fatigue strength of welded elements in materials of different strength. These results also show a strong tendency of increasing of fatigue strength of welded elements after application of UP with the increase in mechanical properties of the material used.



Sign in / Sign up

Export Citation Format

Share Document