scholarly journals A Review of Emotion Recognition Based on EEG using DEAP Dataset

Author(s):  
Rama Chaudhary ◽  
Ram Avtar Jaswal

In modern time, the human-machine interaction technology has been developed so much for recognizing human emotional states depending on physiological signals. The emotional states of human can be recognized by using facial expressions, but sometimes it doesn’t give accurate results. For example, if we detect the accuracy of facial expression of sad person, then it will not give fully satisfied result because sad expression also include frustration, irritation, anger, etc. therefore, it will not be possible to determine the particular expression. Therefore, emotion recognition using Electroencephalogram (EEG), Electrocardiogram (ECG) has gained so much attraction because these are based on brain and heart signals respectively. So, after analyzing all the factors, it is decided to recognize emotional states based on EEG using DEAP Dataset. So that, the better accuracy can be achieved.

2021 ◽  
Vol 119 ◽  
pp. 05008
Author(s):  
Benyoussef Abdellaoui ◽  
Aniss Moumen ◽  
Younes El Bouzekri El Idrissi ◽  
Ahmed Remaida

As emotional content reflects human behaviour, automatic emotion recognition is a topic of growing interest. During the communication of an emotional message, the use of physiological signals and facial expressions gives several advantages that can be expected to understand a person’s personality and psychopathology better and determine human communication and human-machine interaction. In this article, we will present some notions about identifying the emotional state through visual expression, auditory expression and physiological representation, and the techniques used to measure emotions.


2021 ◽  
Vol 8 (5) ◽  
pp. 949
Author(s):  
Fitra A. Bachtiar ◽  
Muhammad Wafi

<p><em>Human machine interaction</em>, khususnya pada <em>facial</em> <em>behavior</em> mulai banyak diperhatikan untuk dapat digunakan sebagai salah satu cara untuk personalisasi pengguna. Kombinasi ekstraksi fitur dengan metode klasifikasi dapat digunakan agar sebuah mesin dapat mengenali ekspresi wajah. Akan tetapi belum diketahui basis metode klasifikasi apa yang tepat untuk digunakan. Penelitian ini membandingkan tiga metode klasifikasi untuk melakukan klasifikasi ekspresi wajah. Dataset ekspresi wajah yang digunakan pada penelitian ini adalah JAFFE dataset dengan total 213 citra wajah yang menunjukkan 7 (tujuh) ekspresi wajah. Ekspresi wajah pada dataset tersebut yaitu <em>anger</em>, <em>disgust</em>, <em>fear</em>, <em>happy</em>, <em>neutral</em>, <em>sadness</em>, dan <em>surprised</em>. Facial Landmark digunakan sebagai ekstraksi fitur wajah. Model klasifikasi yang digunakan pada penelitian ini adalah ELM, SVM, dan <em>k</em>-NN. Masing masing model klasifikasi akan dicari nilai parameter terbaik dengan menggunakan 80% dari total data. 5- <em>fold</em> <em>cross-validation</em> digunakan untuk mencari parameter terbaik. Pengujian model dilakukan dengan 20% data dengan metode evaluasi akurasi, F1 Score, dan waktu komputasi. Nilai parameter terbaik pada ELM adalah menggunakan 40 hidden neuron, SVM dengan nilai  = 10<sup>5</sup> dan 200 iterasi, sedangkan untuk <em>k</em>-NN menggunakan 3 <em>k</em> tetangga. Hasil uji menggunakan parameter tersebut menunjukkan ELM merupakan algoritme terbaik diantara ketiga model klasifikasi tersebut. Akurasi dan F1 Score untuk klasifikasi ekspresi wajah untuk ELM mendapatkan nilai akurasi sebesar 0.76 dan F1 Score 0.76, sedangkan untuk waktu komputasi membutuhkan waktu 6.97´10<sup>-3</sup> detik.   </p><p> </p><p><em><strong>Abstract</strong></em></p><p class="Abstract">H<em>uman-machine interaction, especially facial behavior is considered to be use in user personalization. Feature extraction and classification model combinations can be used for a machine to understand the human facial expression. However, which classification base method should be used is not yet known. This study compares three classification methods for facial expression recognition. JAFFE dataset is used in this study with a total of 213 facial images which shows seven facial expressions. The seven facial expressions are anger, disgust, fear, happy, neutral, sadness, dan surprised. Facial Landmark is used as a facial component features. The classification model used in this study is ELM, SVM, and k-NN. The hyperparameter of each model is searched using 80% of the total data. 5-fold cross-validation is used to find the hyperparameter. The testing is done using 20% of the data and evaluated using accuracy, F1 Score, and computation time. The hyperparameter for ELM is 40 hidden neurons, SVM with  = 105 and 200 iteration, while k-NN used 3 k neighbors. The experiment results show that ELM outperforms other classification methods. The accuracy and F1 Score achieved by ELM is 0.76 and 0.76, respectively. Meanwhile, time computation takes 6.97 10<sup>-3</sup> seconds.      </em></p>


Author(s):  
Hai-Duong Nguyen ◽  
Soonja Yeom ◽  
Guee-Sang Lee ◽  
Hyung-Jeong Yang ◽  
In-Seop Na ◽  
...  

Emotion recognition plays an indispensable role in human–machine interaction system. The process includes finding interesting facial regions in images and classifying them into one of seven classes: angry, disgust, fear, happy, neutral, sad, and surprise. Although many breakthroughs have been made in image classification, especially in facial expression recognition, this research area is still challenging in terms of wild sampling environment. In this paper, we used multi-level features in a convolutional neural network for facial expression recognition. Based on our observations, we introduced various network connections to improve the classification task. By combining the proposed network connections, our method achieved competitive results compared to state-of-the-art methods on the FER2013 dataset.


This paper focuses on a review of recent work on facial expression and hand gesture recognitions. Facial expressions and hand gestures are used to express emotions without oral communication. The human brain has the ability to identify the emotions of persons using expressions or hand gestures within a fraction of a second. Research has been conducted on human–machine interactions (HMIs), and the expectation is that systems based on such HMI algorithms should respond similarly. Furthermore, when a person intends to express emotions orally, he or she automatically uses complementary facial expressions and hand gestures. Extant systems are designed to express these emotions through HMIs without oral communication. Other systems have added various combinations of hand gestures and facial expressions as videos or images. The meaning or emotions conveyed by particular hand gestures and expressions are predefined in these cases. Accordingly, the systems were trained and tested. Further, certain extant systems have separately defined the meanings of such hand gestures and facial expressions


Facial expression is a standout amongst the most imperative features of human emotion recognition. For demonstrating the emotional states facial expressions are utilized by the people. In any case, recognition of facial expressions has persisted a testing and intriguing issue with regards to PC vision. Recognizing the Micro-Facial expression in video sequence is the main objective of the proposed approach. For efficient recognition, the proposed method utilizes the optimal convolution neural network. Here the proposed method considering the input dataset is the CK+ dataset. At first, by means of Adaptive median filtering preprocessing is performed in the input image. From the preprocessed output, the extracted features are Geometric features, Histogram of Oriented Gradients features and Local binary pattern features. The novelty of the proposed method is, with the help of Modified Lion Optimization (MLO) algorithm, the optimal features are selected from the extracted features. In a shorter computational time it has the benefits of rapidly focalizing and effectively acknowledging with the aim of getting an overall arrangement or idea. Finally the recognition is done by Convolution Neural network (CNN). Then the performance of the proposed MFEOCNN method is analyzed in terms of false measures and recognition accuracy. This kind of emotion recognition is mainly used in medicine, marketing, E-learning, entertainment, law and monitoring. From the simulation, we know that the proposed approach achieves maximum recognition accuracy of 99.2% with minimum Mean Absolute Error (MAE) value. This results are compared with the existing for MicroFacial Expression Based Deep-Rooted Learning (MFEDRL), Convolutional Neural Network with Lion Optimization (CNN+LO) and Convolutional Neural Network (CNN) without optimization. The simulation of the proposed method is done in the working platform of MATLAB.


Author(s):  
Yi Ji ◽  
Khalid Idrissi

This paper proposes an automatic facial expression recognition system, which uses new methods in both face detection and feature extraction. In this system, considering that facial expressions are related to a small set of muscles and limited ranges of motions, the facial expressions are recognized by these changes in video sequences. First, the differences between neutral and emotional states are detected. Faces can be automatically located from changing facial organs. Then, LBP features are applied and AdaBoost is used to find the most important features for each expression on essential facial parts. At last, SVM with polynomial kernel is used to classify expressions. The method is evaluated on JAFFE and MMI databases. The performances are better than other automatic or manual annotated systems.


Author(s):  
Fadi Dornaika ◽  
Bogdan Raducanu

Facial expression plays an important role in cognition of human emotions (Fasel, 2003 & Yeasin, 2006). The recognition of facial expressions in image sequences with significant head movement is a challenging problem. It is required by many applications such as human-computer interaction and computer graphics animation (Cañamero, 2005 & Picard, 2001). To classify expressions in still images many techniques have been proposed such as Neural Nets (Tian, 2001), Gabor wavelets (Bartlett, 2004), and active appearance models (Sung, 2006). Recently, more attention has been given to modeling facial deformation in dynamic scenarios. Still image classifiers use feature vectors related to a single frame to perform classification. Temporal classifiers try to capture the temporal pattern in the sequence of feature vectors related to each frame such as the Hidden Markov Model based methods (Cohen, 2003, Black, 1997 & Rabiner, 1989) and Dynamic Bayesian Networks (Zhang, 2005). The main contributions of the paper are as follows. First, we propose an efficient recognition scheme based on the detection of keyframes in videos where the recognition is performed using a temporal classifier. Second, we use the proposed method for extending the human-machine interaction functionality of a robot whose response is generated according to the user’s recognized facial expression. Our proposed approach has several advantages. First, unlike most expression recognition systems that require a frontal view of the face, our system is viewand texture-independent. Second, its learning phase is simple compared to other techniques (e.g., the Hidden Markov Models and Active Appearance Models), that is, we only need to fit second-order Auto-Regressive models to sequences of facial actions. As a result, even when the imaging conditions change the learned Auto-Regressive models need not to be recomputed. The rest of the paper is organized as follows. Section 2 summarizes our developed appearance-based 3D face tracker that we use to track the 3D head pose as well as the facial actions. Section 3 describes the proposed facial expression recognition based on the detection of keyframes. Section 4 provides some experimental results. Section 5 describes the proposed human-machine interaction application that is based on the developed facial expression recognition scheme.


Entropy ◽  
2020 ◽  
Vol 22 (5) ◽  
pp. 511 ◽  
Author(s):  
Lizheng Pan ◽  
Zeming Yin ◽  
Shigang She ◽  
Aiguo Song

Emotion recognition realizing human inner perception has a very important application prospect in human-computer interaction. In order to improve the accuracy of emotion recognition, a novel method combining fused nonlinear features and team-collaboration identification strategy was proposed for emotion recognition using physiological signals. Four nonlinear features, namely approximate entropy (ApEn), sample entropy (SaEn), fuzzy entropy (FuEn) and wavelet packet entropy (WpEn) are employed to reflect emotional states deeply with each type of physiological signal. Then the features of different physiological signals are fused to represent the emotional states from multiple perspectives. Each classifier has its own advantages and disadvantages. In order to make full use of the advantages of other classifiers and avoid the limitation of single classifier, the team-collaboration model is built and the team-collaboration decision-making mechanism is designed according to the proposed team-collaboration identification strategy which is based on the fusion of support vector machine (SVM), decision tree (DT) and extreme learning machine (ELM). Through analysis, SVM is selected as the main classifier with DT and ELM as auxiliary classifiers. According to the designed decision-making mechanism, the proposed team-collaboration identification strategy can effectively employ different classification methods to make decision based on the characteristics of the samples through SVM classification. For samples which are easy to be identified by SVM, SVM directly determines the identification results, whereas SVM-DT-ELM collaboratively determines the identification results, which can effectively utilize the characteristics of each classifier and improve the classification accuracy. The effectiveness and universality of the proposed method are verified by Augsburg database and database for emotion analysis using physiological (DEAP) signals. The experimental results uniformly indicated that the proposed method combining fused nonlinear features and team-collaboration identification strategy presents better performance than the existing methods.


Sign in / Sign up

Export Citation Format

Share Document