Pemilihan Baterai Kendaraan Listrik dengan Metoda Weighted Objective

2021 ◽  
Vol 6 (1) ◽  
Author(s):  
I Made Indradjaja M. Brunner ◽  
Satria M. Brunner

Transportation is a sector that contributes significantly to CO2 gas emissions and has the potential to continue to increase along with the addition of fossil fuel vehicles. Indonesia has plans to switch to electric vehicles as an alternative to reduce greenhouse gas (GHG) emissions from the transportation sector. The battery is an important component of an electric vehicle, and there are several alternative technologies that can be used. This paper  simulates the selection of a suitable battery from various type of batteries, including Lead-acid (PbA), Nickel Metal Hydride (NiMH) and Lithium-ion (Li-ion). The selection is made using the weighted objective method by presenting 5 criteria: energy density; emissions generated for battery production; energy factor of the manufacturing process; availability of critical raw materials required for cathodes and anodes; and availability of recycling facilities. Supporting data to determine the magnitude of each criterion is obtained from literature reviews. The analysis and comparison was carried out by giving weight to the assessment based on the data obtained. The results of calculations carried out in the paper show that the Lead-acid battery is a viable option for use at current time.However, if Indonesia already has NiMH and Li-ion battery recycling facilities, or is capable of producing Lithium-ion batteries, then the criteria and calculation factors can be added and improved.

Author(s):  
Tan Chong Chiat ◽  
◽  
Khairul Anuar Mohamad ◽  
Afishah Alias ◽  
Mohd Shafiee Mohd Sanip ◽  
...  

Due to the increase in demand for electric vehicles (EV) in recent years, the lack of EV charging stations and different EVs’ battery types are causing inconvenience to the user. The paper presents modeling and simulation of the grid-connected EV charging station system using MATLAB Simulink platform. The model consists of LCL filter, inverter, and battery charger. The inverter is regulated by a dq-frame that synchronizes with a phase-locked loop (PLL) to convert a three-phase alternating current (AC) source to a direct current (DC) source. Futhermore, lead acid (Pb-acid), lithium-ion (Li-ion), nickel-cadmium (Ni-Cd), and nickel metal hydride (Ni-MH) were tested and their performances were evaluated using the simulated EV charging station. All simulations were carried out and tested in the MATLAB Simulink platform. The results showed that Li-ion battery reaches the highest state-of-charge (SOC) value which is 51.66%, Pb-acid is 51.60%. Ni-MH is 51.55%, and Ni-Cd is 51.47% within 60s. The voltage values are 226.0V, 225.2V, 220.8V, and 220.2V for Pb-acid, Ni-MH, Ni-Cd and Li-ion, respectively. The findings revealed that the lithium ion is the most suitable for the use of EV since it had the fastest charging and slowest to reach its maximum threshold value of charging voltage.


2020 ◽  
Vol 24 (2 Part A) ◽  
pp. 1031-1043
Author(s):  
Ahmet Aktas ◽  
Yagmur Kırcicek ◽  
Mehmet Ozkaymak

Nowadays, batteries used in many areas such as RES have an important place in energy storage. Because of the unstable and intermittent structure of RES, battery energy storage technology is becoming important. There are many different types of batteries in the market, such as lead-acid, nickel-metal hydride, and lithium-ion. It is very important that these batteries are well recognized and controlled accordingly to extend their cycle life. In this study, necessary parameter values were obtained by conducting lead acid, nickel-metal hydride and lithium-ion charge-discharge experiments by using climatic chamber in the laboratory environment. A single model was created using curve fitting for three different battery types. In addition the electrical model of the batteries, the temperature model was also combined to conduct state analyzes at different operating temperatures of the batteries and a mathematical model was derived. The obtained mathematical model MATLAB/M-File program was used to compare with the experimental results. In this paper, electrical and thermal mathematical equations for different types of batteries are compared with experimental and model results and the accuracy ratios are given.


2015 ◽  
Vol 785 ◽  
pp. 687-691 ◽  
Author(s):  
Rizanaliah Kasim ◽  
Abdul Rahim Abdullah ◽  
Nur Asmiza Selamat ◽  
Mohamad Faizal Baharom ◽  
N.H.T.H. Ahmad

Batteries are essential components of most electrical devices and one of the most important parameters in batteries is storage capacity. It represents the maximum amount of energy that can be extracted from the battery under certain specified condition. This paper presents the analysis of charging and discharging battery signal using periodogram. The periodogram converts waveform data from the time domain into the frequency domain and represents the distribution of the signal power over frequency. This analysis focuses on four types of batteries which are lead-acid (LA), lithium-ion (Li-ion), nickel-cadmium (Ni-Cd) and nickel-metal-hydride (Ni-MH). This paper used battery model from MATLAB/SIMULINK software and the nominal voltage of each battery is 6 and 12V while the capacity is 10 and 20Ah, respectively. The analysis is done and the result shows that varying capacity produce different power at a frequency and voltage at DC component.


2018 ◽  
Vol 178 ◽  
pp. 09012
Author(s):  
Alexey B. Tarasenko ◽  
Tatiana S. Gabderakhmanova ◽  
Sophia V. Kiseleva ◽  
Musi J. Suleymanov

Diesel or gasoline engine cold cranking is a serious problem for different vehicle operation in northern countries. The engine starting torque is usually provided by an on-board electrochemical battery represented by a lead-acid unit. Modern energy storage devices, such as supercapacitors (SCs), lithium-ion, nickel-cadmium (NiCd) and nickel-metal hydride (NiMH) batteries react differently on low temperatures. Moreover, capacity losses also occur. Considering wide applications of such storage devices in electrical vehicles, their behaviour at low temperatures is of interest. Physical simulation of storage battery cold cranking was carried out using a climate chamber. Lithium-ion, NiCd, NiMH and lead-acid batteries were tested individually and paired with a SC unit to generate a power impulse for engine cranking. A number of experiments (up to five) for each type of storage devices were taken. The best performance results both for direct and hybrid cranking simulation were showed by LiFePO4-based and Ni-Cd batteries. The SC module itself showed the best performance, but its specific energy capacity cost is too high to have a large battery system based on SCs only. In this case a combined storage could give enough power to fulfill cranking demands.


Sign in / Sign up

Export Citation Format

Share Document