scholarly journals Improving Porosity of Glycerol-plated Silica from Rice Husk Silica

2019 ◽  
Vol 1 (2) ◽  
pp. 88-97
Author(s):  
Saur Lumban Raja

Research on the increasing pore size of rice husk silica with the addition of glycerol as a template has been done. Sodium silicate obtained from rice husk can be extracted with sodium hydroxide. The resulting sodium silicate is then added to the glycerol and followed by precipitation using hydrochloric acid to obtain silica. The obtained results were calcined at 600°C. The resulting material analised by FT-IR, XRD and BET. The FT-IR data shows an asymmetric Si-O-Si absorption peak at wave number 1067 cm-1 and a symmetrical Si-O-Si peak absorption at 806.77 cm-1 wave number. Diffractogram XRD also shows a widening peak in the area of 22.820 that the silica is amorphous. The result of adsorption of nitrogen desorption of silica isotherm indicated Type IV isotherm adsorption which was characteristic of mesoporous material and obtained the size distribution of       9.2 nm and the pore volume was 0.002850 cc / g and the surface area of silica was               80.38 m2/g

2011 ◽  
Vol 11 (3) ◽  
pp. 279-284 ◽  
Author(s):  
Suyanta Suyanta ◽  
Agus Kuncaka

The research about synthesis and characterization of MCM-41 from rice husk has been done. Silica (SiO2) was extracted from rice husk by refluxing with 3M hydrochloric solution at 80 °C for 3 h. The acid-leached rice husk was filtered, washed, dried and calcined at 650 °C for 6 h lead the rough powder of rice husk silica with light brown in color. Characterization was carried out by X-ray diffraction (XRD) and FTIR spectroscopy method. Rice husk silica was dissolved into the sodium hydroxide solution leading to the solution of sodium silicate, and used as silica source for the synthesis of MCM-41. MCM-41 was synthesized by hydrothermal process to the mixture prepared from 29 g of distilled water, 8.67 g of cetyltrimethyl ammonium bromide (CTMAB), 9.31 g of sodium silicate solution, and amount mL of 1 M H2SO4. Hydrothermal process was carried out at 100 °C in a teflon-lined stainless steel autoclave heated in the oven for 36 h. The solid phase was filtered, then washed with deionised water, and dried in the oven at 100 °C for 2 h. The surfactant CTMAB was removed by calcination at 550 °C for 10 h with heating rate 2 °C/min. The as-synthesized and calcined crystals were characterized by using FTIR spectroscopy, X-ray diffraction and N2 physisorption methods. In order to investigate the effect of silica source, the same procedure was carried out by using pure sodium silicate as silica source. It was concluded that silica extracted from rice husk can be used as raw materials in the synthesis of MCM-41, there is no significant difference in crystallinity and pore properties when was compared to material produced from commercial sodium silicate.


2021 ◽  
Vol 148 ◽  
pp. 106050
Author(s):  
Wasinton Simanjuntak ◽  
Kamisah D. Pandiangan ◽  
Zipora Sembiring ◽  
Agustina Simanjuntak ◽  
Sutopo Hadi

2021 ◽  
Vol 739 (1) ◽  
pp. 012083
Author(s):  
I R Banurea ◽  
N Setyawan ◽  
S Yuliani ◽  
H Herawati ◽  
Hoerudin

2021 ◽  
Vol 49 (4) ◽  
pp. 2000233
Author(s):  
Trung Huu Bui ◽  
Van Sy Pham ◽  
Nguyen Thanh‐Nho ◽  
Quoc An Trieu

2021 ◽  
Vol 1751 ◽  
pp. 012071
Author(s):  
S. Sembiring ◽  
A. Riyanto ◽  
I. Firdaus ◽  
Junaidi ◽  
R. Situmeang

2014 ◽  
Vol 1010-1012 ◽  
pp. 1015-1019
Author(s):  
Ze Xin Yang ◽  
Lin Dong ◽  
Meng Wang ◽  
Huan Li

The main purpose of this article is to develop an environmentally friendly and economically effective process to produce silica from rice husk ash. Sodium silicate solution was prepared by the reaction of rice husk ash and sodium hydroxide solution, and then the sodium silicate solution was used as the raw material for the preparation of silica with sodium bicarbonate. During the reaction, the by-product can be passed into CO2 to prepare sodium bicarbonate what can be reutilized. Experimental route achieved resource recycling and environment-friendly, low energy consumption, zero emissions and so on. Meanwhile the microstructures of the silica powders were characterized by Transmission electron microscope (TEM), X-ray diffraction (XRD), Fourier transform infrared (FTIR) and Thermo gravimetric/Differential thermal analyzer (TG-DTA).The purity of silicon was up to 99.43% and the particle size was 200-300nm.


1998 ◽  
Vol 16 (4) ◽  
pp. 285-293 ◽  
Author(s):  
M.R. Mostafa ◽  
F.Sh. Ahmed

Co3(PO4)2, AlPO4 and the binary system Co3(PO4)2-AlPO4 with different compositions were prepared by the coprecipitation method. The structural properties of these samples were determined using XRD, DTA and FT-IR techniques. The textural properties were determined from the adsorption of nitrogen at 77 K. The surface acidity was measured by a calorimetric titration method. The samples were tested as catalysts in the dehydration of ethanol and isopropanol using a pulse microcatalytic technique. The data obtained from XRD and FT-IR indicate the amorphous structures of the prepared catalysts. An increase in Co3(PO4)2 content led to a decrease in the surface area and in the total pore volume and an increase in the mean pore radius. The surface acidity of the catalyst depends on the chemical composition; the surface acidity increased with an increase in the AlPO4 content. The dehydration temperature and the distribution of acid sites are important parameters in determining the selectivity and activity of the catalyst.


Sign in / Sign up

Export Citation Format

Share Document