scholarly journals PENGARUH MASSA KATALIS DAN WAKTU REAKSI PADA PEMBUATAN BIODIESEL DARI LIMBAH MINYAK JELANTAH DENGAN MENGGUNAKAN KATALIS HETEROGEN K2O DARI LIMBAH KULIT KAKAO

2017 ◽  
Vol 6 (2) ◽  
pp. 24-29
Author(s):  
Jefry R Turnip ◽  
Trio F. L. Tarigan ◽  
Mersi Suriani Sinaga

Waste cooking oil is a waste oil that comes from many types of cooking oils such as corn oil, vegetable oil, ect. The purpose of this research is to waste cooking oil as a raw material to form biodiesel with K2O as the solid catalyst from cocoa pod ash (CPA) which is calcined on temperature 650 oC within 4 hours. This oil contains a high level of Free Fatty Acid (FFA) that is 3.13%. Therefore, pretreatment should be done by using activated carbon (1% w/w) to reduce levels of FFA. The research will be observed the effect of reaction time and the mass of catalyst. The characteristics of biodiesel is analyzed according to the levels of methyl ester in biodiesel, density, and viscosity based on the Indonesian National Standard (SNI). The best conditions of biodiesel are obtained with the amount of catalyst is 6% (w/w) that is calcined at 650 °C, reaction time 180 minutes, ratio mol of alcohol : oil is 12: 1, and 65 oC reaction of temperature, resulting the purity and yield of biodiesel is 99,8% and 92,68%. The results of this research indicates that the use of waste cooking as a raw material is suitable in the manufacture of biodiesel.

Author(s):  
I Nengah Simpen ◽  
I Made Sutha Negara ◽  
Sofyan Dwi Jayanto

Biodiesel production from waste cooking oil in two steps reaction of esterification and transesterification is low efficient, due to twice methanol consumption and need more reaction time. Optimizing reaction conditions of CaO as a matrix of solid catalyst prepared from crab shell (green CaO) and modified by K2O/TiO2 for converting waste cooking oil to biodiesel have been carried out. Catalytic process of waste cooking oil to biodiesel took place in one step reaction of esterification and transesterification. The research result showed that optimum conditions in its one step reaction such as methanol to oil molar ratio was 9:1, amount of CaO/K2O-TiO2 catalyst to oil was 5% and reaction time of 60 minutes with biodiesel yield was 88.24%. Physical and chemical properties of biodiesel which produced from one step reaction of esterification and transesterification of waste cooking oil were suitable with Indonesian National Standard (SNI-04-7182-2006) namely density at 40oC of 850 kg/m3, kinematic viscosity at 40oC of 3.32 cSt, water content of 0.046%, iodine number of 59.25 g I2/100g and acid value of 0.29 mg KOH/g. Gas chromatography-mass spectrometry (GC-MS) analysis of biodiesel formed fatty acid methyl esters from conversion of waste cooking oil.


2019 ◽  
Vol 102 (2) ◽  
pp. 153-160 ◽  
Author(s):  
Alberto Mannu ◽  
Monica Ferro ◽  
Maria Enrica Di Pietro ◽  
Andrea Mele

The consideration towards waste cooking oils is changing from hazardous waste to valuable raw material for industrial application. During the last 5 years, some innovative processes based on the employment of recycled waste cooking oil have appeared in the literature. In this review article, the most recent and innovative applications of recycled waste cooking oil are reported and discussed. These include the production of bioplasticizers, the application of chemicals derived from waste cooking oils as energy vectors and the use of waste cooking oils as a solvent for pollutant agents.


2014 ◽  
Vol 1008-1009 ◽  
pp. 101-106
Author(s):  
Lian Hai Ren

The process of biodiesel made from waste cooking oil via acid catalyst was studied in order to eliminate the waste cooking oil pollution and realize the health of waste oil use. The optimum conditions of biodiesel made from waste cooking oil, effect of reaction time, alcohol-oil ratio and catalyst dosage to the biodiesel conversion were explored by using orthogonal experiment design. The results showed that the conversion of biodiesel is 95.2% under the conditions of the reaction time is 2h, the alcohol-oil ratio is 6:1, the catalyst dosage is 1.5%, and the influence factors can be arranged as follows: reaction time > catalyst dosage > alcohol-oil ratio.


2018 ◽  
Vol 156 ◽  
pp. 03032
Author(s):  
Heri Heriyanto ◽  
SD Murti Sumbogo ◽  
Septina Is Heriyanti ◽  
Inayatu Sholehah ◽  
Ayi Rahmawati

Hydrodeoxygenation (HDO) of waste cooking oil (WCO) and trapped grease over sulfide catalysts was examined to produce high quality transportation fuel from low-grade resources. The hydrodeoxygenation of waste cooking oils was carried out in a high pressure of 30 and 60 bar and high temperature of 300 – 400 °C in a batch reactor autoclave. NiMo/γ-Al2O3 catalyst was prepared and for the first time tested in hydroprocessing of waste cooking oil. The content of NiMo/γ-Al2O3 in each catalyst was about wCo 5 wt.%. A maximum of 77,97 % green diesel yield was achieved at nearly complete conversion of waste cooking oil using NiMo/γ-Al2O3 at temperature of 400°C, pressure 60 bar and 4 hours of reaction time. The oxygen content was decreased from 14,25 wt.% to 13,35 wt.%, at temperature of 400°C, pressure of 30 bar and 1 hour of reaction time. The Hydrodeoxygenation process was much influenced by temperature, pressure, and time.


Author(s):  
Alberto Mannu ◽  
Monica Ferro ◽  
Maria Enrica Di Pietro ◽  
Andrea Mele

The consideration toward Waste Cooking Oils (WCOs) is changing from hazardous waste to valuable raw material for industrial application. During the last five years some innovative processes based on the employment of recycled WCO have appeared in the literature. In the present review article, the most recent applications of recycled Waste Cooking Oil are reported and discussed. These include the production of bio-plasticizers, the application of chemicals derived from WCOs as energy vectors, and the use of WCOs as solvent for pollutant agents.


2012 ◽  
Vol 518-523 ◽  
pp. 3427-3431
Author(s):  
Na Ning ◽  
Lian Hai Ren

Biodiesel was made from waste cooking oil via acid catalyst in order to eliminate the waste cooking oil pollution and realize the health of waste oil use. The optimum conditions of biodiesel made from waste cooking oil, effect of reaction time, alcohol-oil ratio and catalyst dosage to the biodiesel conversion were explored by using orthogonal experiment design. The results showed that the conversion of biodiesel is 95.2% under the conditions of the reaction time is 2h, the alcohol-oil ratio is 6:1, the catalyst dosage is 1.5%, and the influence factors can be arranged as follows: reaction time > catalyst dosage > alcohol-oil ratio.


Author(s):  
Charishma Venkata Sai Anne ◽  
Karthikeyan S. ◽  
Arun C.

Background: Waste biomass derived reusable heterogeneous acid based catalysts are more suitable to overcome the problems associated with homogeneous catalysts. The use of agricultural biomass as catalyst for transesterification process is more economical and it reduces the overall production cost of biodiesel. The identification of an appropriate suitable catalyst for effective transesterification will be a landmark in biofuel sector Objective: In the present investigation, waste wood biomass was used to prepare a low cost sulfonated solid acid catalyst for the production of biodiesel using waste cooking oil. Methods: The pretreated wood biomass was first calcined then sulfonated with H2SO4. The catalyst was characterized by various analyses such as, Fourier-transform infrared spectroscopy (FTIR), Scanning Electron Microscopy (SEM), Energy Dispersive X-Ray Spectroscopy (EDS) and X-ray diffraction (XRD). The central composite design (CCD) based response surface methodology (RSM) was applied to study the influence of individual process variables such as temperature, catalyst load, methanol to oil molar ration and reaction time on biodiesel yield. Results: The obtained optimized conditions are as follows: temperature (165 ˚C), catalyst loading (1.625 wt%), methanol to oil molar ratio (15:1) and reaction time (143 min) with a maximum biodiesel yield of 95 %. The Gas chromatographymass spectrometry (GC-MS) analysis of biodiesel produced from waste cooking oil was showed that it has a mixture of both monounsaturated and saturated methyl esters. Conclusion: Thus the waste wood biomass derived heterogeneous catalyst for the transesterification process of waste cooking oil can be applied for sustainable biodiesel production by adding an additional value for the waste materials and also eliminating the disposable problem of waste oils.


2018 ◽  
Author(s):  
Sierra Spencer ◽  
Malia Scott ◽  
Nelson Macken

Biofuels have received considerable attention as a more sustainable solution for heating applications. Used vegetable oil, normally considered a waste product, has been suggested as a possible candidate. Herein we perform a life cycle assessment to determine the environmental impact of using waste vegetable oil as a fuel. We present a cradle to fuel model that includes the following unit processes: soybean farming, soy oil refining, the cooking process, cleaning/drying waste oil, preheating the oil in a centralized heating facility and transportation when required. For soybean farming, national historical data for yields, energy required for machinery, fertilizers (nitrogen, phosphorous and potassium), herbicides, pesticides and nitrous oxide production are considered. In soy oil refining, steam production using natural gas and electricity for machinery are considered inputs. Preprocessing, extraction using hexane and post processing are considered. In order to determine a mass balance for the cooking operation, oil carryout and waste oil removal are estimated. During waste oil processing, oil is filtered and water removed. Data from GREET is used to compute global warming potential (GWP) and energy consumption in terms of cumulative energy demand (CED). Mass allocation is applied to the soy meal produced in refining and oil utilized for cooking. Results are discussed with emphasis on improving sustainability. A comparison is made to traditional fuels, e.g., commercial fuel oil and natural gas. The production of WVO as fuel has significantly less global warming potential but higher cumulative energy consumption than traditional fuels. The study should provide useful information on the sustainability of using waste cooking oil as a fuel for heating.


2018 ◽  
Vol 8 (1) ◽  
pp. 121-127 ◽  
Author(s):  
Tanzer Eryilmaz

In this study, the methyl ester production process from neutralized waste cooking oils is optimized by using alkali-catalyzed (KOH) single-phase reaction. The optimization process is performed depending on the parameters, such as catalyst concentration, methanol/oil ratio, reaction temperature and reaction time. The optimum methyl ester conversion efficiency was 90.1% at the optimum conditions of 0.7 wt% of potassium hydroxide, 25 wt% methanol/oil ratio, 90 min reaction time and 60°C reaction temperature. After the fuel characteristics of the methyl ester obtained under optimum conditions were determined, the effect on engine performance, CO and NOx emissions of methyl ester was investigated in a diesel engine with a single cylinder and direct injection. When compared to diesel fuel, engine power and torque decreased when using methyl ester, and specific fuel consumption increased. NOx emission increases at a rate of 18.4% on average through use of methyl ester.


In the present investigation, the transesterification of waste cooking oil (WCO) to biodiesel over homogenous catalyst KOH have been carried out. To optimize the transesterification process variables both response surface method (RSM) and artificial neural network (ANN) mathematical models were applied to study the impact of process variables temperature, catalyst loading, methanol to oil ratio and the reaction time on biodiesel yield. The experiments were planned with a central composite design matrix using 24 factorial designs. A performance validation assessment was conducted between RSM and ANN. ANN models showed a high precision prediction competence in terms of coefficient of determination (R2 = 0.9995), Root Mean Square Error (RMSE = 0.5702), Standard Predicted Deviation (SEP = 0.0133), Absolute Average Deviation (AAD = 0.0115) compared to RSM model. The concentration of catalyst load was identified as the most significant factor for the base catalyzed transesterification. Under optimum conditions, the maximum biodiesel yield of 88.3% was determined by the artificial neural network model at 60 ºC, 1.05 g catalyst load, 7:1 methanol to oil ratio and 90 min transesterification reaction time. The biodiesel was analyzed by GCMS and it showed the presence of hexadecanoic acid, 9- octadecenoic acid, 9, 12, 15-octadecatrienoic acid, eicosenoic acid, methyl 18-methyl-nonadecanoate, docosanoic acid, and tetracosanoic acid as key fatty acid methyl esters.


Sign in / Sign up

Export Citation Format

Share Document