scholarly journals THERMODYNAMIC PROPERTIES OF THE Sb2Te3 COMPOUND

2021 ◽  
Vol 0 (4) ◽  
pp. 53-59
Author(s):  
F.R. Aliyev ◽  
◽  
E.N. Orujlu ◽  
D.M. Babanly ◽  
◽  
...  

Thermodynamic properties of the Sb2Te3 compound were studied by measuring electromotive force (EMF) with a liquid electrolyte in the temperature range of 300-450 K. The partial molar functions of antimony in alloys and the corresponding standard integral thermodynamic functions of the Sb2Te3 compound were calculated for the first time based on the EMF measurements under standard conditions. Comparative analysis of obtained results with literature data was carried out

2020 ◽  
Vol 21 (4) ◽  
pp. 714-719
Author(s):  
G.S. Hasanova ◽  
A.I. Aghazade ◽  
Y.A. Yusibov ◽  
M.B. Babanly

Two-phase alloys Bi8Te9+Bi4Te5 and BiTe+Bi8Te9 were studied by the electromotive forces method (EMF) in the temperature range 300-450 K. From the EMF data, the relative partial molar functions of bismuth in the alloys were calculated. The potential-forming reactions responsible for these partial functions were compiled, the values of the standard thermodynamic functions of formation, and the standard entropies of Bi8Te9 and BiTe compounds were calculated. A comparative analysis of the data for BiTe with the literature data was carried out; for Bi8Te9, the thermodynamic functions were obtained for the first time.


2017 ◽  
Vol 2017 ◽  
pp. 1-9 ◽  
Author(s):  
Dunya Mahammad Babanly ◽  
Qorkhmaz Mansur Huseynov ◽  
Ziya Saxaveddin Aliev ◽  
Dilgam Babir Tagiyev ◽  
Mahammad Baba Babanly

The solid-phase diagram of the Tl-TlBr-S system was clarified and the fundamental thermodynamic properties of Tl6SBr4 compound were studied on the basis of electromotive force (EMF) measurements of concentration cells relative to a thallium electrode. The EMF results were used to calculate the relative partial thermodynamic functions of thallium in alloys and the standard integral thermodynamic functions (-ΔfG0, -ΔfH0, and S0298) of Tl6SBr4 compound. All data regarding thermodynamic properties of thallium chalcogen-halides are generalized and comparatively analyzed. Consequently, certain regularities between thermodynamic functions of thallium chalcogen-halides and their binary constituents as well as degree of ionization (DI) of chemical bonding were revealed.


2020 ◽  
Vol 21 (2) ◽  
pp. 312-318
Author(s):  
S. Z. Imamaliyeva ◽  
I. F. Mehdiyeva ◽  
D. B. Taghiyev ◽  
M. B. Babanly

The work presents the results of a thermodynamic study of the Er-Te system by the method of electromotive forces (EMF) in the temperature range of 300-450 K. From the EMF measurements of the concentration cells relative to the Er and ErTe electrodes, the partial thermodynamic functions of ErTe and Er in the alloys are determined, based on which the standard thermodynamic formation functions and the standard entropies of the intermediate compounds ErTe3, Er2Te3, and ErTe are calculated. A comparative analysis of the obtained data with the literature is carried out.


1994 ◽  
Vol 72 (4) ◽  
pp. 1080-1082 ◽  
Author(s):  
P.J. Tumidajski

The thermodynamic properties of dilute NiO in Na2O•2SiO2 for XNiO < 0.0125 have been investigated in the temperature range 1073–1173 K by emf measurements using the electrochemical cell[Formula: see text]where NiO denotes a solution with Na2O•2SiO2. It was found that for XNiO < 0.003 the solutions obey Henry's law. The Henrian activity coefficients and the related dilute solution thermodynamic properties based on the solid NiO standard state are reported.


2021 ◽  
Vol 22 (3) ◽  
pp. 420-425
Author(s):  
Samira Imamaliyeva

The alloys of the Gd-Te system in the range of compositions > 75 at% Te were studied by the methods of X-ray diffraction (XRD) and electromotive forces (EMF). From the EMF measurements of the concentration cells relative to the GdTe electrode in the 300-450 K temperature range, the partial thermodynamic functions of GdTe in alloys were determined. By combining these data with the corresponding functions of Gd in GdTe, the partial molar functions of gadolinium in GdTe3+Te alloys, and standard thermodynamic functions of formation and standard entropy of the GdTe3 compound were calculated. The obtained results were compared with the literature data.


Molecules ◽  
2019 ◽  
Vol 24 (24) ◽  
pp. 4470
Author(s):  
Jiangtao Song ◽  
Fei Yuan ◽  
Long Li ◽  
Yafei Guo ◽  
Tianlong Deng

The heat capacities on two minerals of hungchaoite (MgB4O7·9H2O, Hu) and mcallisterite (MgB6O10·7.5H2O, Mc) have been measured with a precision calorimeter at temperatures ranging from 306.15 to 355.15 K, experimentally. It was found that there are no phase transition and thermal anomalies, and the molar heat capacities against temperature for the minerals of hungchaoite and mcallisterite were fitted as C p , m , Hu   =   − 27019.23675 + 229.55286 T   −   0.63912 T   2   +   ( 5.95862   ×   10   − 4 )   T   3 and C p , mMc   =   − 9981.88552   +   84.10964 T   −   0.22685 T   2   +   ( 2.0593   ×   10   − 4 )   T   3 , respectively. The molar heat capacities and thermodynamic functions of (HT-H298.15), (ST-S298.15), and (GT-G298.15) at intervals of 1 K for the two minerals were obtained for the first time. These results are significant in order to understand the thermodynamic properties of those minerals existing in nature salt lakes, as well as applying them to the chemical engineering process design.


2004 ◽  
Vol 59 (11) ◽  
pp. 825-828
Author(s):  
L. Rycerz ◽  
E. Ingier-Stocka ◽  
B. Ziolek ◽  
S. Gadzuric ◽  
M. Gaune-Escard

The heat capacity of solid and liquid LaBr3 was measured by Differential Scanning Calorimetry (DSC) in the temperature range 300 - 1100 K. The obtained results were fitted by a polynomial temperature dependence. The enthalpy of fusion of LaBr3 was also measured. By combination of these results with the literature data on the entropy, S0m (LaBr3, s, 298.15 K) and the standard molar enthalpy of formation, ΔformH0m (LaBr3, s, 298.15 K), the thermodynamic functions of lanthanum tribromide were calculated up to 1300 K


2002 ◽  
Vol 38 (3-4) ◽  
pp. 237-247 ◽  
Author(s):  
W. Gierlotka ◽  
K. Fitzner ◽  
M. Sukiennik

The partial vapour pressure of mercury over liquid Hg-Tl liquid solutions were determined in the temperature range from 450 to 700 K by direct vapour pressure measurements carried out with the quartz gauge. From the measured ln pHg vs. T relationships activities of mercury were determined. Using Redlich-Kister formulas logarithms of the activity coefficients were described with the following equations: From which all thermodynamic functions in the solutions can be derived.


2021 ◽  
Vol 22 (1) ◽  
pp. 53-58
Author(s):  
P.R. Mammadli ◽  
L.F. Mashadiyeva ◽  
Z.T. Hasanova ◽  
D.M. Babanly

Fundamental thermodynamic properties of the synthetic analog of the famatinite mineral - Cu3SbS4 were studied on the basis of electromotive force (EMF) measurements. The EMF of the concentration chains relative to the Cu electrode with a solid electrolyte was measured for the alloys from the Cu3SbS4 + Sb2S3 + S phase region at 300-380K temperature interval. Based on measurement data, the relative partial thermodynamic functions of copper in alloys, the standard thermodynamic functions of formation, as well as, the standard entropy of the Cu3SbS4 ternary compound were calculated for the first time.


2020 ◽  
Vol 2020 ◽  
pp. 1-8
Author(s):  
Hanyu Zheng ◽  
Kangrui Sun ◽  
Long Li ◽  
Yafei Guo ◽  
Tianlong Deng

In this paper, in order to understand the thermodynamic properties of natural minerals of pinnoite (MgB2O4·3H2O, Pin) and inderite (Mg2B6O11·15H2O, Ind) deposited in salt lakes, heat capacities of two minerals were measured using a precision calorimeter at temperatures from 306.15 to 355.15 K after the high purity was synthesized. It was found that there are no phase transitions and thermal anomalies for the two minerals, and the molar heat capacities against temperature for Pin and Ind were fitted as Cp,m,pin = −2029.47058 + 16.94666T − 0.04396T2 + 3.89409×10−5T3 and Cp,m,Ind = −30814.43795 + 282.68108T − 0.85605T2 + 8.70708×10−4T 3, respectively. On the basis of molar heat capacities (Cp,m) of Pin and Ind, the thermodynamic functions of entropy, enthalpy, and Gibbs free energy at the temperature of 1 K interval for the two minerals were obtained for the first time.


Sign in / Sign up

Export Citation Format

Share Document