scholarly journals On-The-Go Variable Rate Fertilizer Application Method for Rice Through Classification of Crop Nitrogen Nutrition Index (NNI)

2021 ◽  
Vol 15 ◽  
pp. 1-10
Author(s):  
Badril Hisham Abu Bakar ◽  
Jusnaini Muslimin ◽  
Muhammad Naim Fadzli Abd. Rani ◽  
Mohammad Aufa Mhd Bookeri ◽  
Mohd. Taufik Ahmad ◽  
...  

The standard practice among rice farmers in Malaysia is to apply fertilizer using a single application rate for the whole field. However, fertility conditions vary across the field. The excess use of fertilizer leads to increased input cost and can be damaging to the environment. The focus of this research was to develop a method to apply fertilizer on-the-go while sensing the crop nutrient status of rice plants. A machine learning approach was used to develop a crop nitrogen status prediction model. The model used spectral data from an active canopy reflectance sensor and several vegetation indices as inputs. The model was then incorporated into an on-the-go variable rate fertilizer application system. System performance was then evaluated in the field. The results from this work showed that the model had and accuracy of 83% in classifying the nitrogen status of the rice plants. The results also showed that our method was able to save up to 20% fertilizer use while maintaining yield. These findings are important for large estate farmers who are looking to increase productivity and efficiency.

Agriculture ◽  
2018 ◽  
Vol 8 (4) ◽  
pp. 48 ◽  
Author(s):  
Jelle Van Loon ◽  
Alicia Speratti ◽  
Louis Gabarra ◽  
Bram Govaerts

Precision agriculture technology at the hands of smallholder farmers in the developing world is often deemed far-fetched. Low-resource farmers, however, are the most susceptible to negative changes in the environment. Providing these farmers with the right tools to mitigate adversity and to gain greater control of the production process could unlock their potential and support rural communities to meet the increasing global food demand. In this study, a real-time variable rate fertilizer application system was developed and tested as an add-on kit to conventional farm machinery. In the context of low investment costs for smallholder farmers, high user-friendliness and easy installment were the main concerns for the system to be viable. The system used nitrogen (N)-sensors to assess the plant nutrient status on the spot and subsequently adjust the amount of fertilizer deposited according to the plant’s needs. Test bench trials showed that the add-on kit performed well with basic operations, but more precision is required. Variability between N-sensors and metering systems, combined with power fluctuations, created inaccuracies in the resulting application rate. Nevertheless, this work is a stepping stone towards catalyzing the elaboration of more cutting-edge precision solutions to support small-scale farmers to become successful, high producing agro-entrepreneurs.


2016 ◽  
Vol 1 (90) ◽  
pp. 32-36
Author(s):  
A Malienko ◽  
N. Tararico ◽  
T. Zvedenyuk ◽  
V. Lyubomskyy

It was found that long-term cultivation of corn with the fertilizer application rate of N70P72K72 kg/ha of crop rotation and embedding as a by-product of organic fertilizers does not lead to a reduction in yields of the crop. In addition, during prolonged systematic burying of 21,7 t/ha of reside of corn stalks into the soil, there is a favorable for humus and nutrient status. In five-course grain-row crop rotations due to the reduction of organic matter in revenues of 2.5 times, there is a decrease of humus content.


Author(s):  
S. Sai Mohan

With an average consumption of 165.8 kg per hectare, India stands as the third-largest producer and consumer of fertilizer in the world. Farmers practice traditional methods to apply fertilizers uniformly throughout the field. This uniform and constant rate application of fertilizer is inefficient and mostly leads to over-fertilizing certain areas and at the same time, under-fertilizing others, not meeting the actual nutrient demand. Variable-rate fertilizer application (VRFA) is the process of applying various rates of crop nutrients by synchronizing existing machinery with mechatronics according to the variability within any agricultural field. One such effort are to be made to develop VRFA systems to meet the soil and plant needs. A variable rate fertilizer application (VRFA) system based on a digital map was developed in Kharagpur and achieved an appreciable target application rate at selected grid points (Chandel et al., 2016). The system was effective, accurate and showed quick response to target application rates with a negligible time lag. The coefficient of variation at all the outlets was in the range of 11.7–15.0 percent. The system was able to meet the target fertilizer application rate with a variation of up to 15 percent for a grid resolution of 8×8 m. Another VRFA system was developed for controlling the amount of fertilizer that works by measuring the NDVI of crops using an optical sensor (Zhang et al. 2014). This type of VRFA system does not use prescription maps but relies on sensors to provide real-time crop detection. The coefficient of variation was ranging from 0.35 to 2.67 percent and elapsed a response time of less than 0.875 s. The system helps in maintaining desired application rate by making real-time adjustments with on-the-go monitoring. It is revealed that the use of VRFA system helped to improve input use efficiency and decrease the negative effect on the environment. Thus, it is a promising technology through which the performance of a unit area could be tracked, mapped and analyzed. Also, the farmer will be able to know the exact production of each part of the field.


Agronomy ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 1368
Author(s):  
Wenzheng Tang ◽  
Wene Wang ◽  
Dianyu Chen ◽  
Ningbo Cui ◽  
Haosheng Yang ◽  
...  

In order to meet the growing food demand of the global population and maintain sustainable soil fertility, there is an urgent need to optimize fertilizer application amount in agricultural production practices. Most of the existing studies on the optimal K rates for apple orchards were based on case studies and lack information on optimizing K-fertilizer management on a regional scale. Here, we used the method of combining meta-analysis with the K application rate-yield relationship model to quantify and summarize the optimal K rates of the Loess Plateau and Bohai Bay regions in China. We built a dataset based on 159 observations obtained from 18 peer-reviewed literature studies distributed in 15 different research sites and evaluated the regional-scale optimal K rates for apple production. The results showed that the linear plus platform model was more suitable for estimating the regional-scale optimal K rates, which were 208.33 and 176.61 kg K ha−1 for the Loess Plateau and Bohai Bay regions of China, respectively. Compared with high K application rates, the optimal K rates increased K use efficiency by 45.88–68.57%, with almost no yield losses. The optimal K rates also enhanced the yield by 6.30% compared with the low K application rates.


2021 ◽  
Vol 3 (3) ◽  
pp. 458-477
Author(s):  
Mahdi Vahdanjoo ◽  
Claus G. Sorensen

A field area coverage-planning algorithm has been developed for the optimization and simulation of capacitated field operations such as the organic fertilizer application process. The proposed model provides an optimal coverage plan, which includes the optimal sequence of the visited tracks with a designated application rate. The objective of this paper is to present a novel approach for route planning involving two simultaneous optimization criteria, non-working distance minimization and the optimization of application rates, for the capacitated field operations such as organic fertilizer application to improve the overall operational efficiency. The study and the developed algorithm have shown that it is possible to generate the optimized coverage plan based on the required defined capacity of the distributer. In this case, the capacity of the distributer is not considered a limiting factor for the farmers. To validate this new method, a shallow injection application process was considered, and the results of applying the optimization algorithm were compared with the conventional methods. The results show that the proposed method increase operational efficiency by 19.7%. Furthermore, the applicability of the proposed model in robotic application were demonstrated by way of two defined scenarios.


Water ◽  
2021 ◽  
Vol 13 (5) ◽  
pp. 740
Author(s):  
Ken Okamoto ◽  
Shinkichi Goto ◽  
Toshihiko Anzai ◽  
Shotaro Ando

Fertilizer application during sugarcane cultivation is a main source of nitrogen (N) loads to groundwater on small islands in southwestern Japan. The aim of this study was to quantify the effect of reducing the N fertilizer application rate on sugarcane yield, N leaching, and N balance. We conducted a sugarcane cultivation experiment with drainage lysimeters and different N application rates in three cropping seasons (three years). N loads were reduced by reducing the first N application rate in all cropping seasons. The sugarcane yields of the treatment to which the first N application was halved (T2 = 195 kg ha−1 N) were slightly lower than those of the conventional application (T1 = 230 kg ha−1 N) in the first and third seasons (T1 = 91 or 93 tons ha−1, T2 = 89 or 87 tons ha−1). N uptake in T1 and T2 was almost the same in seasons 1 (186–188 kg ha−1) and 3 (147–151 kg ha−1). Based on the responses of sugarcane yield and N uptake to fertilizer reduction in two of the three years, T2 is considered to represent a feasible fertilization practice for farmers. The reduction of the first N fertilizer application reduced the underground amounts of N loads (0–19 kg ha−1). However, application of 0 N in the first fertilization would lead to a substantial reduction in yield in all seasons. Reducing the amount of N in the first application (i.e., replacing T1 with T2) improved N recovery by 9.7–11.9% and reduced N leaching by 13 kg ha−1. These results suggest that halving the amount of N used in the first application can improve N fertilizer use efficiency and reduce N loss to groundwater.


2008 ◽  
Author(s):  
Geetika Dilawari ◽  
Randal K Taylor ◽  
John B Solie ◽  
Praveen Bennur

Sign in / Sign up

Export Citation Format

Share Document