scholarly journals INVALIDITY OF ISOTHERMAL ANALYSIS IN ESTIMATING THE THERMAL PERFORMANCE OF STIRLING ENGINE AND CRYOCOOLER

2021 ◽  
Vol 21 (4) ◽  
pp. 274-288
Author(s):  
Hailaa Jabbar Kareem ◽  
Ali A. F. Al-Hamadani ◽  
Ali Noaman Ibrahim

The Stirling engine is an external heat engine, which is considered as the best option for extracting work from concentrated solar power applications. The most prominent characteristics of the engine are low noise, vibration, and emissions besides reflexivity of usage with any kind of heat source such as solar, biomass, industrial heat, etc. In the present paper, the STE-1008 gamma-type Stirling engine had been analyzed by using an isothermal model to demonstrate the failure of the model in analyzing the STE-1008 considering it firstly as an engine and secondly as a cryocooler. The energy equation had been used to demonstrate the disability of the isothermal model in achieving a successful thermal analysis for engine performance. In addition, a MATLAB code had been developed to check the credibility of the isothermal model in the estimation of the engine thermal parameters. The findings of the isothermal analysis revealed that the heat exchangers are unnecessary. But, in reality; all the necessary heat transfer occur within the heat exchangers rather than in the working space boundaries. Therefore, that is invalid conclusion. However, Schmidt's theory is capable of capturing the essential engine features superbly. In particular, it is capable of capturing the fundamental interplay between the mechanically restricted movement of the engine components as well as the thermodynamic cycle which is obtained from this theory.

2019 ◽  
Author(s):  
Ruijie Li ◽  
Yuan Gao ◽  
Koji Yanaga ◽  
Songgang Qiu

Abstract Free Piston Stirling Engine is an external combustion engine, which can use diversified energy resources, such as solar energy, nuclear energy, geothermal energy, biomass, industrial waste heat etc. and is suitable for the remote area power generation due to the advantage of robustness, durability, reliability, and high efficiency. In this work, a Free Piston Stirling Engine has been designed based on the numerical simulation results and previous experimental experience. Direct Metal Laser Sintering method has been adopted for the manufacturing of the key components including the displacer cap, displacer body, piston housing, cold heat exchanger, and regenerator. One dimension analysis using Sage software has been conducted. The designed engine has a power output of 65W with the hot and cold end temperature is 650°C and 80°C respectively, and charge pressure is 1.35 MPa. Finite Element Method has been used to analyze the structural stress of the engine, which is operated at the high temperature and high pressure, to determine if it is able to tolerate the operating condition designed by the Sage according to the Section VIII Division 2 of the ASME Boiler and Pressure Vessel (BPV) Code. In addition, Computational Fluid Dynamics (CFD) method has been used to investigate the flow distribution in heat exchangers (heat acceptor, regenerator, and heat rejecter), as the heat exchanger performance affect the engine performance greatly. Considering the large mesh number, a quarter of the heat exchangers have been investigated, in order to reduce the mesh numbers and accelerate the calculation speed.


2010 ◽  
Vol 132 (1) ◽  
Author(s):  
C. V. Ramesh

There is immense scope for the development of heat engines that can directly convert solar and biochemical renewable sources of thermal energy to high-grade energy. Regenerative Stirling cycle heat engine with its performance criteria of highest thermal efficiency and high mean effective pressure is theoretically the best engine for small capacity reciprocating heat engine. However, the practical Stirling engine performance is far from the ideal. As an alternative, practical heat engines based on thermodynamic cycles (without regeneration) other than the Stirling cycle have been suggested. This paper deals with a new concept in the design of reciprocating heat engine working on modified Atkinson cycle. In the Atkinson cycle, expansion ratio being higher than compression ratio, the thermal efficiency is better than that of the standard Otto cycle. Heat engine design based on the suggested modified Atkinson cycle can be an alternative to the practical Stirling engine. In the conceptual mechanical design of the engine suggested here, apart from utilizing the principle of Atkinson cycle for achieving higher thermal efficiency, the mechanical configuration of the reciprocating engine ensures a high degree of inertial force balancing. This can result in reduced vibrations in the mountings of the power units.


The Stirling engine is achieving great concern in the actual energy area since it has many advantages such as its cleanness and quietness. It is also considered a flexible prime mover for useful for several applications such as micro- cogeneration, solar thermal generation and other micro-distributed generation conditions. Theoretically, the Stirling cycle engine can efficiently convert heat into the mechanical work at the Carnot efficiency. The importance of the choice of working fluid is also demonstrated in the literature. In fact, the Stirling engine power can be increased ten times by changing the working fluid from air to hydrogen for example. This paper represents an evaluation of the on working fluid of a solar-dish Stirling heat engine. Thermal efficiency, exergetic efficiency and the rate of entropy generation corresponding to the optimum value of the output power are also evaluated. Numerical results demonstrate that the swept volume ratio is independent of the choice of working fluid.


2012 ◽  
Vol 2012 ◽  
pp. 1-14 ◽  
Author(s):  
A. Asnaghi ◽  
S. M. Ladjevardi ◽  
P. Saleh Izadkhast ◽  
A. H. Kashani

This paper provides numerical simulation and thermodynamic analysis of SOLO 161 Solar Stirling engine. Some imperfect working conditions, pistons' dead volumes, and work losses are considered in the simulation process. Considering an imperfect regeneration, an isothermal model is developed to calculate heat transfer. Hot and cold pistons dead volumes are accounted in the work diagram calculations. Regenerator effectiveness, heater and cooler temperatures, working gas, phase difference, average engine pressure, and dead volumes are considered as effective parameters. By variations in the effective parameters, Stirling engine performance is estimated. Results of this study indicate that the increase in the heater and cooler temperature difference and the decrease in the dead volumes will lead to an increase in thermal efficiency. Moreover, net work has its maximum value when the angle between two pistons shaft equal to 90 degrees while efficiency is maximum in 110 degrees.


Processes ◽  
2021 ◽  
Vol 9 (6) ◽  
pp. 1051
Author(s):  
Jungmo Oh ◽  
Kichol Noh ◽  
Changhee Lee

The Atkinson cycle, where expansion ratio is higher than the compression ratio, is one of the methods used to improve thermal efficiency of engines. Miller improved the Atkinson cycle by controlling the intake- or exhaust-valve closing timing, a technique which is called the Miller cycle. The Otto–Miller cycle can improve thermal efficiency and reduce NOx emission by reducing compression work; however, it must compensate for the compression pressure and maintain the intake air mass through an effective compression ratio or turbocharge. Hence, we performed thermodynamic cycle analysis with changes in the intake-valve closing timing for the Otto–Miller cycle and evaluated the engine performance and Miller timing through the resulting problems and solutions. When only the compression ratio was compensated, the theoretical thermal efficiency of the Otto–Miller cycle improved by approximately 18.8% compared to that of the Otto cycle. In terms of thermal efficiency, it is more advantageous to compensate only the compression ratio; however, when considering the output of the engine, it is advantageous to also compensate the boost pressure to maintain the intake air mass flow rate.


Author(s):  
Fatih Aksoy ◽  
Hamit Solmaz ◽  
Muhammed Arslan ◽  
Emre Yılmaz ◽  
Duygu İpci ◽  
...  

Author(s):  
Bhaskar Tamma ◽  
Juan Carlos Alvarez ◽  
Aaron J. Simon

Reduction in emissions, especially NOx has been the main study of various engine researchers in the light of stringent emission norms. To reduce the time and cost involved in testing these technologies, engine thermodynamic cycle predictive tools are used. The present work uses one such predictive tool (GT Power from Gamma Technologies) for predicting the influence of water addition in a turbocharged 6-cylinder diesel engine intake on engine performance and NOx emissions. The experiments for comparison with modeling included the introduction of liquid water in the engine intake stream, between the compressor and intercooler ranging from 0 to 100% of fuel flow rate. NOx emission reduced linearly with water addition with reduction of 63% with less than 1% penalty on fuel efficiency at 100% water addition. The GT Power model predicted the performance within 5% of experimental data and NOx emission within 10% of the experiments.


Sign in / Sign up

Export Citation Format

Share Document