scholarly journals A Theoretical Study on the Thermodynamic Cycle of Concept Engine with Miller Cycle

Processes ◽  
2021 ◽  
Vol 9 (6) ◽  
pp. 1051
Author(s):  
Jungmo Oh ◽  
Kichol Noh ◽  
Changhee Lee

The Atkinson cycle, where expansion ratio is higher than the compression ratio, is one of the methods used to improve thermal efficiency of engines. Miller improved the Atkinson cycle by controlling the intake- or exhaust-valve closing timing, a technique which is called the Miller cycle. The Otto–Miller cycle can improve thermal efficiency and reduce NOx emission by reducing compression work; however, it must compensate for the compression pressure and maintain the intake air mass through an effective compression ratio or turbocharge. Hence, we performed thermodynamic cycle analysis with changes in the intake-valve closing timing for the Otto–Miller cycle and evaluated the engine performance and Miller timing through the resulting problems and solutions. When only the compression ratio was compensated, the theoretical thermal efficiency of the Otto–Miller cycle improved by approximately 18.8% compared to that of the Otto cycle. In terms of thermal efficiency, it is more advantageous to compensate only the compression ratio; however, when considering the output of the engine, it is advantageous to also compensate the boost pressure to maintain the intake air mass flow rate.

Author(s):  
Seiichi Shiga ◽  
Kenji Nishida ◽  
Shizuo Yagi ◽  
Youichi Miyashita ◽  
Yoshiharu Yuzawa ◽  
...  

This paper presents further investigation into the effect of over-expansion cycle with late-closing of intake valves on the engine performance in gasoline engines. A larger single-cylinder test engine with the stroke volume of 650 cc was used with four kinds of expansion ratio (geometrical compression ratio) from 10 to 25 and four sets of intake valve closure (I.V.C.) timings from 0 to 110 deg C.A. ABDC. Late-closing has an effect of decreasing the pumping work due to the reduction of intake vacuum, althogh higher expansion ratio increases the friction work due to the average cylinder pressure level. Combining the higher expansion ratio with the late-closing determines the mechanical efficiency on the basis of these two contrastive effects. The indicated thermal efficiency is mostly determined by the expansion ratio and little affected by the nominal compression ratio. The value of the indicated thermal efficiency reaches to 48% at most which is almost comparable with the value of diesel engines. The improvement of both indicated and brake thermal efficiency reaches to 16% which is much higher than ever reported by the authors. A simple thermodynamic calculation could successfully explain the behavior of the indicated thermal efficiency. The brake thermal efficiency could also be improved due to the increase in both mechanical and indicated efficiencies.


2010 ◽  
Vol 132 (1) ◽  
Author(s):  
C. V. Ramesh

There is immense scope for the development of heat engines that can directly convert solar and biochemical renewable sources of thermal energy to high-grade energy. Regenerative Stirling cycle heat engine with its performance criteria of highest thermal efficiency and high mean effective pressure is theoretically the best engine for small capacity reciprocating heat engine. However, the practical Stirling engine performance is far from the ideal. As an alternative, practical heat engines based on thermodynamic cycles (without regeneration) other than the Stirling cycle have been suggested. This paper deals with a new concept in the design of reciprocating heat engine working on modified Atkinson cycle. In the Atkinson cycle, expansion ratio being higher than compression ratio, the thermal efficiency is better than that of the standard Otto cycle. Heat engine design based on the suggested modified Atkinson cycle can be an alternative to the practical Stirling engine. In the conceptual mechanical design of the engine suggested here, apart from utilizing the principle of Atkinson cycle for achieving higher thermal efficiency, the mechanical configuration of the reciprocating engine ensures a high degree of inertial force balancing. This can result in reduced vibrations in the mountings of the power units.


Author(s):  
A. Manivannan ◽  
R. Ramprabhu ◽  
P. Tamilporai ◽  
S. Chandrasekaran

This paper deals with Numerical Study of 4-stoke, Single cylinder, Spark Ignition, Extended Expansion Lean Burn Engine. Engine processes are simulated using thermodynamic and global modeling techniques. In the simulation study following process are considered compression, combustion, and expansion. Sub-models are used to include effect due to gas exchange process, heat transfer and friction. Wiebe heat release formula was used to predict the cylinder pressure, which was used to find out the indicated work done. The heat transfer from the cylinder, friction and pumping losses also were taken into account to predict the brake mean effective pressure, brake thermal efficiency and brake specific fuel consumption. Extended Expansion Engine operates on Otto-Atkinson cycle. Late Intake Valve Closure (LIVC) technique is used to control the load. The Atkinson cycle has lager expansion ratio than compression ratio. This is achieved by increasing the geometric compression ratio and employing LIVC. Simulation result shows that there is an increase in thermal efficiency up to a certain limit of intake valve closure timing. Optimum performance is attained at 90 deg intake valve closure (IVC) timing further delaying the intake valve closure reduces the engine performance.


Author(s):  
T J Rychter ◽  
A Teodorczyk ◽  
C R Stone ◽  
H J Leonard ◽  
N Ladommatos ◽  
...  

A variable compression ratio concept that can give a different expansion ratio to the compression ratio has been evaluated by means of a simulation of a turbocharged diesel engine. The compression ratio is controlled by varying the ratio of the connecting rod length to the crank throw, hence the name variable crank radius/connecting rod length engine (VR/LE). The VR/LE mechanism kinematics have been defined and described, and the compression ratio and expansion ratio have been presented as a function of the eccentric phase angle (αo). A zero-dimensional engine simulation that has been the subject of comprehensive validation has been used as the basis of the VR/LE study. The effect of the compression ratio on the engine performance at fixed loads is presented. The principal benefits are a reduction in fuel consumption at part load of about 2 per cent and a reduction in ignition delay that leads to an estimated 6 dB reduction in combustion noise. The study has been conducted within the assumption of a maximum cylinder pressure of 160 bar.


Author(s):  
A G Osborne

Demands for more power from the turbocharged diesel, without increase in bulk or weight, has led to an increase in levels of mean effective pressure by the application of high-pressure turbocharging. An investigation was conducted to determine engine performance under high b.m.e.p. conditions and this paper presents results of the experimental part of the research programme. Test work was carried out on a single-cylinder research engine equipped with an independent pressure-charging facility. Boost pressure ratios up to 6.2:1 were used with the geometric compression ratio reduced, in stages, to 8:1, to limit peak cylinder pressure. Power levels up to 35.4 bar b.m.e.p. were produced.


2021 ◽  
Vol 22 (2) ◽  
pp. 196-204
Author(s):  
Sergei V. Smirnov ◽  
Alexander R. Makarov ◽  
Ivan A. Zaev ◽  
Gulnara T. Khudaibergenova

The article is devoted to the study of the possibilities of improving the technical and economic indicators of an internal combustion engine (ICE) through the use of the Miller cycle with a shortened intake. A review of scientific works on the use of the Atkinson cycle and Miller cycle in an internal combustion engine is carried out. A comparative analysis of theoretical cycles: Otto cycle, Atkinson cycle and Miller cycle is carried out. Calculated studies of the influence of the expansion ratio and the pressure increase ratio on the efficiency of the Atkinson cycle have been carried out. The ratios are presented that allow using the Miller cycle with a short inlet to obtain the same theoretical efficiency of the cycle as that of the Atkinson cycle. At the same time, the implementation of the Miller cycle in a real engine design significantly exceeds the possibilities of using the Atkinson cycle. The results of the study showed that the use of the Miller cycle with a shortened intake is preferable, but it must necessarily increase the compression ratio and intake pressure through the use of boost. On the example of real data of the main parameters of the cycle, it is shown that the use of the theoretical Miller cycle can provide a significant up to 12.2% increase in the efficiency of the cycle compared to the Otto cycle. The ratios, conditions and recommendations are presented that allow the effective use of the Miller cycle with a shortened intake in a real engine design.


Author(s):  
Jerald A. Caton

This investigation quantified the effects of compression ratio (CR) and expansion ratio (ER) on performance, efficiency, and second law parameters for an automotive, spark-ignition engine. The well known increase in engine performance for increasing CR and ER is demonstrated. These increases for brake engine performance are modest for CRs greater than about 10 for the conditions studied. The results demonstrated that the increasing friction and heat losses for the higher CRs are of the same order as the thermodynamic gains. Also, the results included the destruction of availability during combustion. For a part load condition, the availability destroyed decreased from about 23% to 21% for CRs of 4 and 10, respectively. In addition, this study examined cases with greater ERs than CRs. The overall cycle for these cases is often called an “Atkinson” cycle. For most cases, the thermal efficiency first increased as ER increased, attained a maximum efficiency, and then decreased. The decrease in efficiency after the maximum value was due to the increased heat losses, increased friction, and ineffective exhaust processes (due to the reduced cylinder pressure at the time of exhaust valve opening). For part load cases, the higher ER provided only modest gains due to the increased pumping losses associated with the constant load requirement. For the wide open throttle cases, however, the higher ERs provided significant gains. For example, for a compression ratio of 10, expansion ratios of 10 and 30 provided brake thermal efficiencies of about 34% and 43%, respectively. Although the net thermodynamic gains are significant, large ERs such as 30 may not be practical in most applications.


Author(s):  
Mojtaba Beigzad Abbassi ◽  
Mohamad Hashemi Gahruei ◽  
Saeed Vahidi ◽  
Hamed Shahmirzae Jeshvaghani

This study is concerned with the performance analysis and comparison of air standard Diesel and Diesel-Atkinson cycles with heat-transfer loss, friction like term loss and variable specific-heat ratio of the working fluid based on finite-time thermodynamics. Also numerical examples are detailed to show the relations between the output power and the compression ratio, between the thermal efficiency and the compression ratio, as well as the optimal relation between the output power and the thermal efficiency of both cycles. Furthermore, the effects of variable specific-heat ratio of the working fluid, heat transfer and the friction-like term loss on the performance of both irreversible cycles are analyzed. Comparison of the performance of cycles shows that the heat efficiency and the output power of an air standard Diesel-Atkinson are higher than the Diesel ones and the points of maximum output power and thermal efficiency of Diesel-Atkinson cycle occur at the lower compression ratio. Reduction of Noxis another advantage of Diesel-Atkinson cycle. The results obtained in this paper provide guidance for the design of Diesel and Diesel-Atkinson engines.


2021 ◽  
Author(s):  
Stanisław Szwaja ◽  
Mirosław Szymkowiak

The article discusses the innovative concept of the over-expanded thermodynamic cycle, the author of which is the Polish engineer-designer Mirosław Szymkowiak. This cycle is realized on the basis of a new and innovative, previously unknown design, of a piston-crankshaft linkage mechanism with the aid of an additional element known as a rocker arm. Additionally, the proposed mechanism allows for a smooth change of the compression/expansion ratio of the engine during its operation. In the beginning, the earlier conceptions of the rocker engine developed by Szymkowiak were presented, and then the main construction assumptions and kinematic calculations were described. It was confirmed, that the developed linkage has big potential in improving the engine's thermal efficiency by approximately 12% relative. Additionally, it significantly reduces the exhaust gas pressure, when the exhaust valve is opened, therefore, contributes to the reduction of the noise emitted by the engine.


Sign in / Sign up

Export Citation Format

Share Document