ENHANCEMENT THE HEAT TRANSFER FOR TWO-PHASE FLOW THROUGH A RECTANGULAR RIBBED VERTICAL CHANNEL

Author(s):  
Riyadh S Al-Turaihi ◽  
Doaa F Kareem

The heat transfer coefficient and temperature distribution of two phase flow (water, air)in rectangular ribbed vertical channel was investigated experimentally and numerically inthis work for different values of water and air superficial velocities (0.0421, 0.0842, 0.1158,0.1474 and 0.1684 m/s) and (1.0964, 1.425, 1.644, 1.864 and 2.193 m/s), respectively, atconstant heat flux (120 W). The distribution of temperature along the channel wasphotographed using thermal camera and compared with images for the correspondingcontours which found numerically. The experimental results of heat transfer coefficientcompared with computational fluid dynamics model simulated by Ansys fluent 15.0. Agood agreement has been found between the experimental and numerical data, where thepercentage deviation between the experimental and the numerical results is (1% - 6% ). Theresults showed that, the local heat transfer coefficient increased by adding ribs, it alsoincreased as the velocity of the flow increased.

Author(s):  
Riyadh S Al-Turaihi ◽  
Doaa F Kareem

 The heat transfer coefficient and temperature distribution of two phase flow (water, air)in rectangular ribbed vertical channel was investigated experimentally and numerically inthis work for different values of water and air superficial velocities (0.0421, 0.0842, 0.1158,0.1474 and 0.1684 m/s) and (1.0964, 1.425, 1.644, 1.864 and 2.193 m/s), respectively, atconstant heat flux (120 W). The distribution of temperature along the channel wasphotographed using thermal camera and compared with images for the correspondingcontours which found numerically. The experimental results of heat transfer coefficientcompared with computational fluid dynamics model simulated by Ansys fluent 15.0. Agood agreement has been found between the experimental and numerical data, where thepercentage deviation between the experimental and the numerical results is (1% - 6% ). Theresults showed that, the local heat transfer coefficient increased by adding ribs, it alsoincreased as the velocity of the flow increased.


Author(s):  
Se´bastien Luciani ◽  
David Brutin ◽  
Christophe Le Niliot ◽  
Loune`s Tadrist

Flow boiling in minichannels is the most complex convective phase change process. Indeed, there are a lot of physical parameters that influence the two-phase flow during boiling. Here, we will focus on the influence of one of this factor: the gravity level. Actually, there are not many mechanisms that have been proposed for the role of this bound on boiling phenomena. In fact, there is not complete agreement on the importance of gravity on heat and mass transfers with phase change because there is a lack of experimental data at this small scale and because reproducing different gravity levels during parabolic flights has a cost. In this line, the goal of this work is to obtain benchmark data on the local heat transfer coefficient in a minichannel during hyper and microgravity. We want to acquire a better knowledge of the elementary phenomena which control the heat and mass transfers during convective boiling. Indeed, boiling in microscale geometry is a very efficient mode of heat transfer since high heat and mass transfer coefficients are achieved. Actually, minichannels and microchannels are widely used in industry and they are already attractive in many domains such as design of compact evaporators and heat exchangers. They provide an effective method of fluid movement and they have large heat dissipation capabilities. In these situations, their compact size and heat transfer abilities are unrivalled. In this communication, the objective is to acquire better knowledge of the conditions that influence the two-phase flow under microgravity. The expected results will contribute to the development of microgravity models. To perform these investigations, we used an experimental data coupling with an inverse method based on BEM (Boundary Element Method). This non intrusive approach allows us to solve a 3D multi domain IHCP (Inverse Heat Conduction Problem). With this analysis, we are able to quantify the local heat flux, the local temperature and the local heat transfer coefficient in a minichannel (254 μm) by inversing thermocouples data without disturbing the established flow.


2001 ◽  
Author(s):  
S. I. Haider ◽  
Yogendra K. Joshi ◽  
Wataru Nakayama

Abstract The study presents a model for the two-phase flow and heat transfer in the closed loop, two-phase thermosyphon (CLTPT) involving co-current natural circulation. Most available models deal with two-phase thermosyphons with counter-current circulation within a closed, vertical, wickless heat pipe. The present research focuses on CLTPTs for electronics cooling that face more complex two-phase flow patterns than the vertical heat pipes, due to closed loop geometry and smaller tube size. The present model is based on mass, momentum, and energy balances in the evaporator, rising tube, condenser, and the falling tube. The homogeneous two-phase flow model is used to evaluate the friction pressure drop of the two-phase flow imposed by the available gravitational head through the loop. The saturation temperature dictates both the chip temperature and the condenser heat rejection capacity. Thermodynamic constraints are applied to model the saturation temperature, which also depends upon the local heat transfer coefficient and the two-phase flow patterns inside the condenser. The boiling characteristics of the enhanced structure are used to predict the chip temperature. The model is compared with experimental data for dielectric working fluid PF-5060 and is in general agreement with the observed trends. The degradation of condensation heat transfer coefficient due to diminished vapor convective effects, and the presence of subcooled liquid in the condenser are expected to cause higher thermal resistance at low heat fluxes. The local condensation heat transfer coefficient is a major area of uncertainty.


1998 ◽  
Vol 120 (2) ◽  
pp. 485-491 ◽  
Author(s):  
T. S. Ravigururajan

Microchannel surfaces, often machined to 20 to 1000 μm in width and depth, are employed in high-heat-flux applications. However, a large number of variables, control the two-phase flow heat transfer coefficient. The pressure, the surface heat flux, and the mass flux significantly affect the thermal transport. Experiments were conducted on a setup that was built for testing microchannel heat exchanges. The parameters considered in the study are power input: 20 to 300 W, volume flow rate: 35 to 300 ml/min, quality: 0 to 0.5, inlet subcooling: 5 to 15°C. The results indicate that the heat transfer coefficient and pressure drop are functions of the flow quality, the mass flux, and, of course, the heat flux and the related surface superheat. The heat transfer coefficient decreases from a value of 12,000 W/m2-K to 9000, W/m2-K at 80°C, when the wall superheat is increased from 10 to 80°C. The coefficient decreases by 30 percent when the exit vapor quality is increased from 0.01 to 0.65.


Author(s):  
Nishant Tiwari ◽  
Manoj Kumar Moharana

Flow boiling in microchannel heat sink offers an effective cooling solution for high power density micro devices. A three-dimensional numerical study based on volume of fraction model (VOF) coupled with evaporation condensation model accounting for the liquid-vapor phase change is undertaken to recreate vapor bubble formation in saturated flow boiling in wavy microchannel. Constant wall heat flux imposed at the bottom surface of the substrate while other faces are insulated. To understand the conjugate effects, simulations has been carried out for substrate thickness to channel depth ratio (δsf ∼ 1–5), substrate wall to fluid thermal conductivity ratio (ksf ∼ 22–300) and waviness (γ ∼ 0.008–0.04). Bubble nucleation, growth, and departure of bubble plays a significant role in heat transfer and pressure drop characteristics in two-phase flow in wavy microchannel. The coolant (water) temperature at the inlet is taken to be 373 K while flow was at atmospheric pressure. This makes shorter waiting period of bubble nucleation, and the number density of bubbles on the solid surface increases. This results in enhancement of the boiling effect, and thus with the presence of bubbles, the mixing of laminar boundary layers improves and enhances the overall heat transfer coefficient. Channel amplitude play an important factor that can suitably reduce the friction factor and enhances the heat transfer coefficient.


2021 ◽  
Vol 2116 (1) ◽  
pp. 012110
Author(s):  
L Cattani ◽  
F Bozzoli ◽  
V Ayel ◽  
C Romestant ◽  
Y Bertin

Abstract The aim of this work is to estimate the local heat flux and heat transfer coefficient for the case of evaporation of thin liquid film deposited on capillary heated channel: it plays a fundamental role in the two-phase heat transfer processes inside mini-channels. In the present analysis it is investigated a semi-infinite slug flow (one liquid slug followed by one single vapour bubble) in a heated capillary copper tube. The estimation procedure here adopted is based on the solution of the inverse heat conduction problem within the wall domain adopting, as input data, the temperature field on the external tube wall acquired by means of infrared thermography.


Sign in / Sign up

Export Citation Format

Share Document