scholarly journals AC to DC Three Level Pulse Width Modulation Converter by Using Matlab Simulink

2019 ◽  
Vol 1 (2) ◽  
Author(s):  
R. Palanisamy ◽  
S. Vidyasagar ◽  
V. Kalyanasundaram ◽  
D. Karthikeyan ◽  
K. Selvakumar ◽  
...  

Multilevel converters have a significant role in power processing control in the power system, which has some inherent features like reduced harmonics, high power & medium voltage, reduced voltage stress. In this proposed paper, a novel multilevel inverter with reduced number of switches and without passive components. The proposed inverter generates 15 level output voltage with suitable switching pulse generation using multicarrier sinusoidal pulse width modulation (MSPWM) and different level of voltages are obtained with variation of modulation index. Also coupled inductor is used to minimize the harmonic content and smoothing output current. The scheme which includes different range of unequal voltage sources. As a result, the proposed system it reduces switching control complexity and there is no voltage balancing problem. This paper elucidates the operating modes, voltage stress minimisation and harmonic reduction are discussed. The results of the proposed multilevel dc-ac converter are verified using matlab/simulink. The simulation & hardware results of the proposed inverter were verified using matlab simulink and dsPIC controller respectively, which was analysed with different voltage level and different modulation index.


Author(s):  
Nabil Farah ◽  
Jurifa Bt. Mat Lazi ◽  
MHN Talib

<p>Multilevel Inverter (MLI) has attracted a great attention by different researchers and industries due to its capability in handling high power application and minimizing the harmonics contents in the output. This study propose three different topologies of MLI (5-level) which are Cascaded H-Bridge Multilevel Inverter (CHMLI) ,Diode Clamped Multilevel Inverter and Flying Capacitor Multilevel Inverter (FCMLI) .These three topologies have been modelled in MATLAB/SIMULINK and compared in terms of THD and number of components used. Sinusoidal Pulse Width Modulation is utilized to control both of the topologies with same DC source. The results showed that ,CHMLI is superior compared to DCMLI and FCMLI in which the CHMLI produce 26.29% THD while DCMLI and FCMLI produce 29.14% and 33.53% respectively .Moreover less components and switching losses is obtained when using the CHMLI.</p>


Author(s):  
C. R. Balamurugan ◽  
K. Vijayalakshmi

<p><span>This paper presents a multilevel inverter with reduced number of switches to produce a five level output. PWM technique (pulse width modulation) has been used to trigger the MLI switches. It gives reduced harmonic. This proposed topology is connected with R-load and RL-load. Four signals are generated for switching on the multilevel inverter (MLI) switches by comparing four level triangular waveform with sine wave. In this proposed topology two switches are reduced from the conventional Cascaded five level inverter. The simulation analysis has been done by MATLAB/SIMULINK.</span></p>


2018 ◽  
Vol 7 (4.11) ◽  
pp. 241
Author(s):  
M. F. Mohd Zin ◽  
R. Baharom ◽  
I. Mohd Yassin

This paper presents the development of boost inverter using a single phase matrix converter (SPMC). A new switching algorithm was developed to control the SPMC circuit topology to operate as a boost inverter. The pulse width modulation (PWM) technique was used to calculate the switching duty ratio to synthesize the output. As part of boost inverter operation, a safe-commutation switching algorithm has been applied to avoid the voltage and current spikes due to the effect of inductive loads. The simulation of the proposed converter was carried out in MATLAB/SIMULINK. Selected simulation are presented to verify the proposed operation. 


2018 ◽  
Vol 7 (4.11) ◽  
pp. 281
Author(s):  
M. F. Mohd Zin ◽  
R. Baharom ◽  
I. Mohd Yassin

This paper presents the development of boost inverter using a single phase matrix converter (SPMC). A new switching algorithm was developed to control the SPMC circuit topology to operate as a boost inverter. The pulse width modulation (PWM) technique was used to calculate the switching duty ratio to synthesize the output. As part of boost inverter operation, a safe-commutation switching algorithm has been applied to avoid the voltage and current spikes due to the effect of inductive loads. The simulation of the proposed converter was carried out in MATLAB/SIMULINK. Selected simulation are presented to verify the proposed operation.  


Sign in / Sign up

Export Citation Format

Share Document