scholarly journals Compressional behavior of strontianite SrCO3 by synchrotron X-ray radiation diffraction: effects of pressure transmitting media

2020 ◽  
Vol 48 (5-6) ◽  
pp. 455-467
Author(s):  
BO ZHANG ◽  
SHIJIE HUANG ◽  
WEI CHEN ◽  
BO LI ◽  
ZHILIN YE ◽  
...  

The compressional behavior of strontianite SrCO3 was investigated at ambient temperature and high pressure, using a diamond anvil cell (DAC) with Ne as a pressure transmitting medium. X-ray diffraction patterns were collected to ~52 GPa using in situ angle-dispersive synchrotron-based powder X-ray diffraction (XRD). A phase transition was observed at ~20 GPa, and no indications of further transitions were detected up to ~52 GPa. The pressure-volume (P-V) data within 0.27-17.35 GPa were fitted to a third-order Birch-Murnaghan equation of state (BM3 EoS) to obtain the elastic coefficients including zero-pressure unit-cell volume, isothermal bulk modulus and its pressure derivative: V0 = 258.4(3) Å3, KT0 = 55(2) GPa, and K'T0 = 4.3(3). The V0 and KT0 were obtained as 258.1(2) Å3 and 57.1(6) GPa, when fixed K'T0 = 4. The axial compressional behavior of strontianite was also investigated by fitting the pressure-lattice parameter data to a parameterized form of the BM3 EoS, and the compression of the a-, b-, and c-axis was strongly anisotropic, with Ka0 = 104(6), Kb0 = 52(12), and Kc0 = 31.6(5) GPa. Based on this and previous studies using different pressure transmitting media (PTM), the effects PTM on the compressional behavior of strontianite were discussed.

Minerals ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 608
Author(s):  
Pei-Lun Lee ◽  
Eugene Huang ◽  
Jennifer Kung

In situ high-pressure synchrotron X-ray diffraction and Raman spectroscopic experiments of scottyite, BaCu2Si2O7, were carried out in a diamond anvil cell up to 21 GPa at room temperature. X-ray diffraction patterns reveal four new peaks near 3.5, 3.1, 2.6 and 2.2 Å above 8 GPa, while some peaks of the original phase disappear above 10 GPa. In the Raman experiment, we observed two discontinuities in dν/dP, the slopes of Raman wavenumber (ν) of some vibration modes versus pressure (P), at approximately 8 and 12 GPa, indicating that the Si-O symmetrical and asymmetrical vibration modes change with pressure. Fitting the compression data to Birch–Murnaghan equation yields a bulk modulus of 102 ± 5 GPa for scottyite, assuming Ko′ is four. Scottyite shows anisotropic compressibility along three crystallographic axes, among which c-axis was the most compressible axis, b-axis was the last and a-axis was similar to the c-axis on the compression. Both X-ray and Raman spectroscopic data provide evidences that scottyite undergoes a reversible phase transformation at 8 GPa.


2005 ◽  
Vol 19 (06) ◽  
pp. 313-316
Author(s):  
X. M. QIN ◽  
Y. YU ◽  
G. M. ZHANG ◽  
F. Y. LI ◽  
J. LIU ◽  
...  

In-situ high-pressure energy dispersive X-ray diffraction measurements on CuBa 2- Ca 3 Cu 4 O 10 + δ (Cu-1234) have been performed by using diamond anvil cell (DAC) device with synchrotron radiation. The results suggest that the crystal structure of Cu-1234 superconductor is stable under pressures up to 34 GPa at room temperature. According to the Birch–Murnaghan equation of state, the bulk modulus is obtained to be ~ 150 GPa.


Crystals ◽  
2018 ◽  
Vol 9 (1) ◽  
pp. 2 ◽  
Author(s):  
Alka Garg ◽  
Daniel Errandonea ◽  
Julio Pellicer-Porres ◽  
Domingo Martinez-Garcia ◽  
Swayam Kesari ◽  
...  

The high-pressure behaviour of LiCrO2, a compound isostructural to the battery compound LiCoO2, has been investigated by synchrotron-based angle-dispersive X-ray powder diffraction, Raman spectroscopy, and resistance measurements up to 41, 30, and 10 Gpa, respectively. The stability of the layered structured compound on a triangular lattice with R-3m space group is confirmed in all three measurements up to the highest pressure reached. The dependence of lattice parameters and unit-cell volume with pressure has been determined from the structural refinements of X-ray diffraction patterns that are used to extract the axial compressibilities and bulk modulus by means of Birch–Murnaghan equation-of-state fits. The pressure coefficients for the two Raman-active modes, A1g and Eg, and their mode-Grüneisen parameters are reported. The electrical resistance measurements indicate that pressure has little influence in the resistivity up to 10 GPa. The obtained results for the vibrational and structural properties of LiCrO2 under pressure are in line with the published results of the similar studies on the related compounds. Research work reported in this article contributes significantly to enhance the understanding on the structural and mechanical properties of LiCrO2 and related lithium compounds.


2013 ◽  
Vol 2013 ◽  
pp. 1-6 ◽  
Author(s):  
Dawei Fan ◽  
Maining Ma ◽  
Shuyi Wei ◽  
Zhiqiang Chen ◽  
Hongsen Xie

The compression behavior of synthetic magnesium- (Mg-) yttrium (Y) garnet Mg3Y2(SiO4)3has been investigated upto about 8.79 GPa at 300 K usingin situangle-dispersive X-ray diffraction and a diamond anvil cell at the beamline X17C, National Synchrotron Light Source, Brookhaven National Laboratory. No phase transition has been observed within the pressure range investigated. The unit-cell parameters and volume decreased systematically with increasing pressure, and a reliable isothermal bulk modulus (KT0) and its pressure derivative (KT0′) were obtained in this study. The values of zero-pressure volumeV0,K0, andK0′refined with a third-order Birch-Murnaghan equation of state areV0=1727.9±0.2 Å3,KT0=145±3 GPa, andK0′=8.5±0.9. IfKT0′is fixed at 4,KT0is obtained as158±2 GPa.


2001 ◽  
Vol 15 (18) ◽  
pp. 2491-2497 ◽  
Author(s):  
J. L. ZHU ◽  
L. C. CHEN ◽  
R. C. YU ◽  
F. Y. LI ◽  
J. LIU ◽  
...  

In situ high pressure energy dispersive X-ray diffraction measurements on layered perovskite-like manganate Ca 3 Mn 2 O 7 under pressures up to 35 GPa have been performed by using diamond anvil cell with synchrotron radiation. The results show that the structure of layered perovskite-like manganate Ca 3 Mn 2 O 7 is unstable under pressure due to the easy compression of NaCl-type blocks. The structure of Ca 3 Mn 2 O 7 underwent two phase transitions under pressures in the range of 0~35 GPa. One was at about 1.3 GPa with the crystal structure changing from tetragonal to orthorhombic. The other was at about 9.5 GPa with the crystal structure changing from orthorhombic back to another tetragonal.


RSC Advances ◽  
2015 ◽  
Vol 5 (19) ◽  
pp. 14603-14609 ◽  
Author(s):  
Xiaoli Huang ◽  
Fangfei Li ◽  
Qiang Zhou ◽  
Gang Wu ◽  
Yanping Huang ◽  
...  

In situ synchrotron X-ray diffraction with laser-heated diamond anvil cells study the EOS of Pt.


2001 ◽  
Vol 72 (2) ◽  
pp. 1289 ◽  
Author(s):  
Tetsu Watanuki ◽  
Osamu Shimomura ◽  
Takehiko Yagi ◽  
Tadashi Kondo ◽  
Maiko Isshiki

2019 ◽  
Vol 34 (3) ◽  
pp. 242-250 ◽  
Author(s):  
J. Anike ◽  
R. Derbeshi ◽  
W. Wong-Ng ◽  
W. Liu ◽  
D. Windover ◽  
...  

Structural characterization and X-ray reference powder pattern determination have been conducted for the Co- and Zn-containing tridymite derivatives Ba(Co1−xZnx)SiO4 (x = 0.2, 0.4, 0.6, 0.8). The bright blue series of Ba(Co1−xZnx)SiO4 crystallized in the hexagonal P63 space group (No. 173), with Z = 6. While the lattice parameter “a” decreases from 9.126 (2) Å to 9.10374(6) Å from x = 0.2 to 0.8, the lattice parameter “c” increases from 8.69477(12) Å to 8.72200(10) Å, respectively. Apparently, despite the similarity of ionic sizes of Zn2+ and Co2+, these opposing trends are due to the framework tetrahedral tilting of (ZnCo)O4. The lattice volume, V, remains comparable between 626.27 Å3 and 626.017 (7) Å3 from x = 0 to x = 0.8. UV-visible absorption spectrum measurements indicate the band gap of these two materials to be ≈3.3 and ≈3.5 eV, respectively, therefore potential UV photocatalytic materials. Reference powder X-ray diffraction patterns of these compounds have been submitted to be included in the Powder Diffraction File (PDF).


2014 ◽  
Vol 1712 ◽  
Author(s):  
Thomas W. Cornelius ◽  
Zhe Ren ◽  
Francesca Mastropietro ◽  
Simon Langlais ◽  
Anton Davydok ◽  
...  

ABSTRACTA scanning force microscope for in situ nanofocused X-ray studies (SFINX) has been developed which can be installed on diffractometers at synchrotron beamlines allowing for the combination with various techniques such as coherent X-ray diffraction and fluorescence. The capabilities of this device are demonstrated on Cu nanowires and on Au islands grown on sapphire (0001). The sample topography, crystallinity, and elemental distribution of the same area are investigated by recording simultaneously an AFM image, a scanning X-ray diffraction map, and a fluorescence map. Additionally, the mechanical response of Au islands is studied by in situ indentation tests employing the AFM-tip and recording 2D X-ray diffraction patterns during mechanical loading.


Sign in / Sign up

Export Citation Format

Share Document