scholarly journals Efficient Lifted Planning with Regression-Based Heuristics

Author(s):  
Hadi Qovaizi

Modern state-of-the-art planners operate by generating a grounded transition system prior to performing search for a solution to a given planning task. Some tasks involve a significant number of objects or entail managing predicates and action schemas with a significant number of arguments. Hence, this instantiation procedure can exhaust all available memory and therefore prevent a planner from performing search to find a solution. This thesis explores this limitation by presenting a benchmark set of problems based on Organic Chemistry Synthesis that was submitted to the latest International Planning Competition (IPC-2018). This benchmark was constructed to gauge the performance of the competing planners given that instantiation is an issue. Furthermore, a novel algorithm, the Regression-Based Heuristic Planner (RBHP), is developed with the aim of averting this issue. RBHP was inspired by the retro-synthetic approach commonly used to solve organic synthesis problems efficiently. RBHP solves planning tasks by applying domain independent heuristics, computed by regression, and performing best-first search. In contrast to most modern planners, RBHP computes heuristics backwards by applying the goal-directed regression operator. However, the best-first search proceeds forward similar to other planners. The proposed planner is evaluated on a set of planning tasks included in previous International Planning Competitions (IPC) against a subset of the top scoring state-of-the-art planners submitted to the IPC-2018.

2021 ◽  
Author(s):  
Hadi Qovaizi

Modern state-of-the-art planners operate by generating a grounded transition system prior to performing search for a solution to a given planning task. Some tasks involve a significant number of objects or entail managing predicates and action schemas with a significant number of arguments. Hence, this instantiation procedure can exhaust all available memory and therefore prevent a planner from performing search to find a solution. This thesis explores this limitation by presenting a benchmark set of problems based on Organic Chemistry Synthesis that was submitted to the latest International Planning Competition (IPC-2018). This benchmark was constructed to gauge the performance of the competing planners given that instantiation is an issue. Furthermore, a novel algorithm, the Regression-Based Heuristic Planner (RBHP), is developed with the aim of averting this issue. RBHP was inspired by the retro-synthetic approach commonly used to solve organic synthesis problems efficiently. RBHP solves planning tasks by applying domain independent heuristics, computed by regression, and performing best-first search. In contrast to most modern planners, RBHP computes heuristics backwards by applying the goal-directed regression operator. However, the best-first search proceeds forward similar to other planners. The proposed planner is evaluated on a set of planning tasks included in previous International Planning Competitions (IPC) against a subset of the top scoring state-of-the-art planners submitted to the IPC-2018.


10.29007/493z ◽  
2018 ◽  
Author(s):  
Arman Masoumi ◽  
Megan Antoniazzi ◽  
Mikhail Soutchanski

Organic Synthesis is a computationally challenging practical problem concerned with constructing a target molecule from a set of initially available molecules via chemical reactions. This paper demonstrates how organic synthesis can be formulated as a planning problem in Artificial Intelligence, and how it can be explored using the state-of-the-art domain independent planners.To this end, we develop a methodology to represent chemical molecules and generic reactions in PDDL 2.2, a version of the standardized Planning Domain Definition Language popular in AI. In our model, derived predicates define common functional groups and chemical classes in chemistry, and actionscorrespond to generic chemical reactions. We develop a set of benchmark problems. Since PDDL is supported as an input language by many modern planners, our benchmark can be subsequently useful forempirical assessment of the performance of various state-of-the-art planners.


Author(s):  
Mauro Vallati ◽  
Lukáš Chrpa ◽  
Thomas L. Mccluskey

AbstractThe International Planning Competition (IPC) is a prominent event of the artificial intelligence planning community that has been organized since 1998; it aims at fostering the development and comparison of planning approaches, assessing the state-of-the-art in planning and identifying new challenging benchmarks. IPC has a strong impact also outside the planning community, by providing a large number of ready-to-use planning engines and testing pioneering applications of planning techniques.This paper focusses on the deterministic part of IPC 2014, and describes format, participants, benchmarks as well as a thorough analysis of the results. Generally, results of the competition indicates some significant progress, but they also highlight issues and challenges that the planning community will have to face in the future.


2018 ◽  
Vol 16 (15) ◽  
pp. 2602-2618 ◽  
Author(s):  
Mingchun Gao ◽  
Rongxuan Ye ◽  
Weijia Shen ◽  
Bin Xu

This review demonstrates the state-of-the-art applications of copper nitrate as a nitration reagent, oxidant, catalyst, promoter and precursor of nitrile oxides.


2019 ◽  
Author(s):  
Jenny Bottek ◽  
Camille Soun ◽  
Julia K Volke ◽  
Akanksha Dixit ◽  
Stephanie Thiebes ◽  
...  

SUMMARYMacrophages perform essential functions during bacterial infections, such as phagocytosis of pathogens and elimination of neutrophils to reduce spreading of infection, inflammation and tissue damage. The spatial distribution of macrophages is critical to respond to tissue specific adaptations upon infections. Using a novel algorithm for correlative mass spectrometry imaging and state-of-the-art multiplex microscopy, we report here that macrophages within the urinary bladder are positioned in the connective tissue underneath the urothelium. Invading uropathogenic E.coli induced an IL-6–dependent CX3CL1 expression by urothelial cells, facilitating relocation of macrophages from the connective tissue into the urothelium. These cells phagocytosed UPECs and eliminated neutrophils to maintain barrier function of the urothelium, preventing persistent and recurrent urinary tract infection. GRAPHICAL ABSTRACT


2020 ◽  
Vol 34 (04) ◽  
pp. 3962-3969
Author(s):  
Evrard Garcelon ◽  
Mohammad Ghavamzadeh ◽  
Alessandro Lazaric ◽  
Matteo Pirotta

In many fields such as digital marketing, healthcare, finance, and robotics, it is common to have a well-tested and reliable baseline policy running in production (e.g., a recommender system). Nonetheless, the baseline policy is often suboptimal. In this case, it is desirable to deploy online learning algorithms (e.g., a multi-armed bandit algorithm) that interact with the system to learn a better/optimal policy under the constraint that during the learning process the performance is almost never worse than the performance of the baseline itself. In this paper, we study the conservative learning problem in the contextual linear bandit setting and introduce a novel algorithm, the Conservative Constrained LinUCB (CLUCB2). We derive regret bounds for CLUCB2 that match existing results and empirically show that it outperforms state-of-the-art conservative bandit algorithms in a number of synthetic and real-world problems. Finally, we consider a more realistic constraint where the performance is verified only at predefined checkpoints (instead of at every step) and show how this relaxed constraint favorably impacts the regret and empirical performance of CLUCB2.


Author(s):  
Andrew Cropper ◽  
Sebastijan Dumančic

A major challenge in inductive logic programming (ILP) is learning large programs. We argue that a key limitation of existing systems is that they use entailment to guide the hypothesis search. This approach is limited because entailment is a binary decision: a hypothesis either entails an example or does not, and there is no intermediate position. To address this limitation, we go beyond entailment and use 'example-dependent' loss functions to guide the search, where a hypothesis can partially cover an example. We implement our idea in Brute, a new ILP system which uses best-first search, guided by an example-dependent loss function, to incrementally build programs. Our experiments on three diverse program synthesis domains (robot planning, string transformations, and ASCII art), show that Brute can substantially outperform existing ILP systems, both in terms of predictive accuracies and learning times, and can learn programs 20 times larger than state-of-the-art systems.


Author(s):  
Douglass F. Taber ◽  
Tristan Lambert

Organic synthesis is a vibrant and rapidly evolving field; chemists can now cyclize alkenes directly onto enones. Like the first five books in this series, Organic Synthesis: State of the Art 2013-2015 will lead readers quickly to the most important recent developments in a research area. This series offers chemists a way to stay abreast of what's new and exciting in organic synthesis. The cumulative reaction/transformation index of 2013-2015 outlines all significant new organic transformations over the past twelve years. Future volumes will continue to come out every two years. The 2013-2015 volume features the best new methods in subspecialties such as C-O, C-N and C-C ring construction, catalytic asymmetric synthesis, selective C-H functionalization, and enantioselective epoxidation. This text consolidates two years of Douglass Taber's popular weekly online column, "Organic Chemistry Highlights" as featured on the organic-chemistry.org website and also features cumulative indices of all six volumes in this series, going back twelve years.


2018 ◽  
Vol 14 (3) ◽  
pp. 134-166 ◽  
Author(s):  
Amit Singh ◽  
Aditi Sharan

This article describes how semantic web data sources follow linked data principles to facilitate efficient information retrieval and knowledge sharing. These data sources may provide complementary, overlapping or contradicting information. In order to integrate these data sources, the authors perform entity linking. Entity linking is an important task of identifying and linking entities across data sources that refer to the same real-world entities. In this work, they have proposed a genetic fuzzy approach to learn linkage rules for entity linking. This method is domain independent, automatic and scalable. Their approach uses fuzzy logic to adapt mutation and crossover rates of genetic programming to ensure guided convergence. The authors' experimental evaluation demonstrates that our approach is competitive and make significant improvements over state of the art methods.


2020 ◽  
Vol 20 (5) ◽  
pp. 609-624
Author(s):  
ANTONIUS WEINZIERL ◽  
RICHARD TAUPE ◽  
GERHARD FRIEDRICH

AbstractAnswer-Set Programming (ASP) is a powerful and expressive knowledge representation paradigm with a significant number of applications in logic-based AI. The traditional ground-and-solve approach, however, requires ASP programs to be grounded upfront and thus suffers from the so-called grounding bottleneck (i.e., ASP programs easily exhaust all available memory and thus become unsolvable). As a remedy, lazy-grounding ASP solvers have been developed, but many state-of-the-art techniques for grounded ASP solving have not been available to them yet. In this work we present, for the first time, adaptions to the lazy-grounding setting for many important techniques, like restarts, phase saving, domain-independent heuristics, and learned-clause deletion. Furthermore, we investigate their effects and in general observe a large improvement in solving capabilities and also uncover negative effects in certain cases, indicating the need for portfolio solving as known from other solvers.


Sign in / Sign up

Export Citation Format

Share Document