scholarly journals Development of infrared thermal mapping technique for electronic devices

Author(s):  
Sanjay Ailani

The goal of this research project is to develop an experimental setup that is capable of demonstrating thermal behavior of the electronic device. The project focuses on thermal mapping at device, integrated circuit and printed circuit board (PCB) level. A unique technique to perform thermal mapping on integrated circuits and printed circuit board based on Infrared Thermography is proposed in this research project. The developed experimental setup is capable of performing steady state and transient analysis at device and PCB level. The proposed test setup is applied to perform thermal mapping on 68HC11 microcontroller board to predict accurate temperature distribution on the real time operating printed circuit board. The accuracy and validation of the experimental setup are the two major challenges faced in this work. Apart from this, to know the exact transistor junction temperature, it is necessary to develop methodology that prevents heat spreading, allows proper cooling and the one that provides stable cooling thermal coefficient. The performance of infrared thermography has been validated against thermocouple results. The experimental results are compared with the ones obtained by digital thermometer. In order to achieve stability and certainty in the results, insulated environment is preferred. Thermocouple results can be taken as reference since it is in physical contact with the die or the package. Cooling of the electronic device is also performed in this work. Oil based heatsink has been implemented using mineral Aldrich oil which is specially designed for IR spectroscopy. Several different combinations of layers of coating of Boron Nitride spray and black spray paint are deployed with different emissivity settings. The effect of the number of color layer coatings and emissivity values have been investigated. Various challenges pertaining to heat spreading, heat dependent cooling coefficients and spatial resolution have been resolved. The performance of the test setup has been evaluated for both steady state and transient analysis. In additon, thermocouple results have been taken as reference.

2021 ◽  
Author(s):  
Sanjay Ailani

The goal of this research project is to develop an experimental setup that is capable of demonstrating thermal behavior of the electronic device. The project focuses on thermal mapping at device, integrated circuit and printed circuit board (PCB) level. A unique technique to perform thermal mapping on integrated circuits and printed circuit board based on Infrared Thermography is proposed in this research project. The developed experimental setup is capable of performing steady state and transient analysis at device and PCB level. The proposed test setup is applied to perform thermal mapping on 68HC11 microcontroller board to predict accurate temperature distribution on the real time operating printed circuit board. The accuracy and validation of the experimental setup are the two major challenges faced in this work. Apart from this, to know the exact transistor junction temperature, it is necessary to develop methodology that prevents heat spreading, allows proper cooling and the one that provides stable cooling thermal coefficient. The performance of infrared thermography has been validated against thermocouple results. The experimental results are compared with the ones obtained by digital thermometer. In order to achieve stability and certainty in the results, insulated environment is preferred. Thermocouple results can be taken as reference since it is in physical contact with the die or the package. Cooling of the electronic device is also performed in this work. Oil based heatsink has been implemented using mineral Aldrich oil which is specially designed for IR spectroscopy. Several different combinations of layers of coating of Boron Nitride spray and black spray paint are deployed with different emissivity settings. The effect of the number of color layer coatings and emissivity values have been investigated. Various challenges pertaining to heat spreading, heat dependent cooling coefficients and spatial resolution have been resolved. The performance of the test setup has been evaluated for both steady state and transient analysis. In additon, thermocouple results have been taken as reference.


Author(s):  
John F. Maddox ◽  
Roy W. Knight ◽  
Sushil H. Bhavnani

The thermal performance of an electronic device is heavily dependent on the properties of the printed circuit board (PCB) to which it is attached. However, even small variations in the process used to fabricate a PCB can have drastic effects on its thermal properties. Therefore, it is necessary to experimentally verify that each stage in the manufacturing process is producing the desired result. Steady state thermal resistance measurements, taken with a comparative cut bar apparatus based on ASTM D 5470-06, were used to compare PCBs manufactured from the same design by different vendors and the effects of vias filled with epoxy versus unfilled vias on the thermal resistance of a PCB. It was found that the thermal resistance of the PCBs varied by as much as 30% between vendors and that the PCBs with epoxy filled vias had a higher thermal resistance than those with unfilled vias, possibly due to the order in which the manufacturing steps were taken.


2010 ◽  
Vol 132 (3) ◽  
Author(s):  
Clemens J. M. Lasance

The nontrivial issues associated with calculating the steady state heat spreading effects generated by a heat source on top of a multilayer assembly such as a printed circuit board are discussed. It is argued that problems arise with the interpretation of heat spreading effects due to a misconception about the meaning of often-quoted flux limits and especially the physical meaning of thermal resistance. The usefulness of a number of approaches that are generally in use to analyze heat spreading effects is discussed and it is shown that the popular series-resistance approach has severe limitations. A number of test cases are covered in detail and the results testify to this assertion.


Circuit World ◽  
2016 ◽  
Vol 42 (1) ◽  
pp. 32-36 ◽  
Author(s):  
Michal Baszynski ◽  
Edward Ramotowski ◽  
Dariusz Ostaszewski ◽  
Tomasz Klej ◽  
Mariusz Wojcik ◽  
...  

Purpose – The purpose of this paper is to evaluate thermal properties of printed circuit board (PCB) made with use of new materials and technologies. Design/methodology/approach – Four PCBs with the same layout but made with use of different materials and technologies have been investigated using thermal camera to compare their thermal properties. Findings – The results show how important the thermal properties of PCBs are for providing effective heat dissipation, and how a simple alteration to the design can help to improve the thermal performance of electronic device. Proper layout, new materials and technologies of PCB manufacturing can significantly reduce the temperature of electronic components resulting in higher reliability of electronic and power electronic devices. Originality/value – This paper shows the advantages of new technologies and materials in PCB thermal management.


Circuit World ◽  
2017 ◽  
Vol 43 (2) ◽  
pp. 45-55 ◽  
Author(s):  
Vadimas Verdingovas ◽  
Salil Joshy ◽  
Morten Stendahl Jellesen ◽  
Rajan Ambat

Purpose The purpose of this study is to show that the humidity levels for surface insulation resistance (SIR)-related failures are dependent on the type of activators used in no-clean flux systems and to demonstrate the possibility of simulating the effects of humidity and contamination on printed circuit board components and sensitive parts if typical SIR data connected to a particular climatic condition are available. This is shown on representative components and typical circuits. Design/methodology/approach A range of SIR values obtained on SIR patterns with 1,476 squares was used as input data for the circuit analysis. The SIR data were compared to the surface resistance values observable on a real device printed circuit board assembly. SIR issues at the component and circuit levels were analysed on the basis of parasitic circuit effects owing to the formation of a water layer as an electrical conduction medium. Findings This paper provides a summary of the effects of contamination with various weak organic acids representing the active components in no-clean solder flux residue, and demonstrates the effect of humidity and contamination on the possible malfunctions and errors in electronic circuits. The effect of contamination and humidity is expressed as drift from the nominal resistance values of the resistors, self-discharge of the capacitors and the errors in the circuits due to parasitic leakage currents (reduction of SIR). Practical/implications The methodology of the analysis of the circuits using a range of empirical leakage resistance values combined with the knowledge of the humidity and contamination profile of the electronics can be used for the robust design of a device, which is also important for electronic products relying on low current consumption for long battery lifetime. Originality/value Examples provide a basic link between the combined effect of humidity and contamination and the performance of electronic circuits. The methodology shown provides the possibility of addressing the climatic reliability of an electronic device at the early stage of device design by using typical SIR data representing the possible climate exposure.


2017 ◽  
Vol 27 (6) ◽  
pp. 1304-1310 ◽  
Author(s):  
Abderrahmane Baïri ◽  
Clara Ortega Hermoso ◽  
David San Martén Ortega ◽  
Iken Baïri ◽  
Zsolt Peter

Purpose This work deals with the case of the quad flat non-lead 64 (QFN64) electronic package generating a low power range ranging from 0.01 to 0.1W. It is installed on one side of a printed circuit board (PCB) that can be inclined relative to the horizontal plane with an angle varying between 0° and 90° (horizontal and vertical positions, respectively). The surface temperature of the electronic assembly is subjected to air natural convection. Design/methodology/approach Calculations are done by means of the finite volume method for many configurations obtained by varying the generated power and the inclination angle. Findings The distribution of the surface temperature is determined on all the assembly areas (QFN and PCB). The study shows that the thermal behaviour of the electronic device is influenced by the generated power and the inclination angle. The 3D numerical survey leads to correlations allowing calculation of the average surface temperature in any part of the assembly, according to the power generated by the QFN64 and the inclination angle. Originality/value The proposed accurate correlations are original and unpublished. They optimize the thermal design of the electronic QFN64 package, which is increasingly used in many engineering fields.


1992 ◽  
Vol 59 (2S) ◽  
pp. S253-S259 ◽  
Author(s):  
E. Suhir

Treating a printed circuit board (PCB) as a thin flexible rectangular plate, we evaluate its dynamic response to periodic shock loads applied to the support contour. The effect of the load periodicity on the amplitudes, accelerations, and stresses is analyzed for transient and steady-state damped linear vibrations, as well as for steady-state undamped nonlinear vibrations. It is shown that the transient nonresonant linear response can exceed the steady-state response by up to two times, and that the linear approach can be misleading in the case of a nondeformable support contour and intense loading. The obtained results can be of help when evaluating the accelerations, experienced by surface mounted electronic components and devices, and the dynamic stresses in a PCB of the given type, dimensions, and support conditions.


Sign in / Sign up

Export Citation Format

Share Document