scholarly journals Investigation of wind loads on bridge decks: an experimental and numerical analysis

Author(s):  
Anna Lena Assel

Wind tunnel testing is very expensive, especially due to the handmade models and the cost of building and operation of wind tunnels. Therefore, numerical modelling such as computational fluid dynamics can be a more cost efficient solution and is seen to take the leading position in the future. The following research contains the validation of the Computational Fluid Dynamics tool VXFlow by comparing the numerical results with values in literature, the Eurocode and wind tunnel measurements. The study includes the analysis of static wind loads for different wind barrier geometries for the example of the Suderelbebrucke in Hamburg. VXFlow is found to give good results in a short computational time but tends to overpredict the drag coefficient. The application is aligned for investigations in the preliminary design of bridge decks and can be also used for wind tunnel validation. Keywords: Bridge deck, CFD tools, VXFlow, static wind loads, wind barrier

2021 ◽  
Author(s):  
Anna Lena Assel

Wind tunnel testing is very expensive, especially due to the handmade models and the cost of building and operation of wind tunnels. Therefore, numerical modelling such as computational fluid dynamics can be a more cost efficient solution and is seen to take the leading position in the future. The following research contains the validation of the Computational Fluid Dynamics tool VXFlow by comparing the numerical results with values in literature, the Eurocode and wind tunnel measurements. The study includes the analysis of static wind loads for different wind barrier geometries for the example of the Suderelbebrucke in Hamburg. VXFlow is found to give good results in a short computational time but tends to overpredict the drag coefficient. The application is aligned for investigations in the preliminary design of bridge decks and can be also used for wind tunnel validation. Keywords: Bridge deck, CFD tools, VXFlow, static wind loads, wind barrier


2021 ◽  
Vol 11 (4) ◽  
pp. 1642
Author(s):  
Yuxiang Zhang ◽  
Philip Cardiff ◽  
Jennifer Keenahan

Engineers, architects, planners and designers must carefully consider the effects of wind in their work. Due to their slender and flexible nature, long-span bridges can often experience vibrations due to the wind, and so the careful analysis of wind effects is paramount. Traditionally, wind tunnel tests have been the preferred method of conducting bridge wind analysis. In recent times, owing to improved computational power, computational fluid dynamics simulations are coming to the fore as viable means of analysing wind effects on bridges. The focus of this paper is on long-span cable-supported bridges. Wind issues in long-span cable-supported bridges can include flutter, vortex-induced vibrations and rain–wind-induced vibrations. This paper presents a state-of-the-art review of research on the use of wind tunnel tests and computational fluid dynamics modelling of these wind issues on long-span bridges.


2005 ◽  
Author(s):  
Vincent G. Chapin ◽  
Romaric Neyhousser ◽  
Stephane Jamme ◽  
Guillaume Dulliand ◽  
Patrick Chassaing

In this paper we propose a rational viscous Computational Fluid Dynamics (CFD) methodology applied to sailing yacht rig aerodynamic design and analysis. After an outlook of present challenges in high speed sailing, we emphasized the necessity of innovation and CFD to conceive, validate and optimize new aero-hydrodynamic concepts. Then, we present our CFD methodology through CAD, mesh generation, numerical and physical modelling choices, and their validation on typical rig configurations through wind-tunnel test comparisons. The methodology defined, we illustrate the relevance and wide potential of advanced numerical tools to investigate sailing yacht rig design questions like the relation between sail camber, propulsive force and aerodynamic finesse, and like the mast-mainsail non linear interaction. Through these examples, it is shown how sailing yacht rig improvements may be drawn by using viscous CFD based on Reynolds Averaged Navier-Stokes equations (RANS). Then the extensive use of viscous CFD, rather than wind-tunnel tests on scale models, for the evaluation or ranking of improved designs with increased time savings. Viscous CFD methodology is used on a preliminary study of the complex and largely unknown Yves Parlier Hydraplaneur double rig. We show how it is possible to increase our understanding of his flow physics with strong sail interactions, and we hope this methodology will open new roads toward optimized design. Throughout the paper, the necessary comparison between CFD and wind-tunnel test will be presented to focus on limitations and drawbacks of viscous CFD tools, and to address future improvements.


2012 ◽  
Vol 256-259 ◽  
pp. 2739-2742
Author(s):  
Ji Hong Bi ◽  
Peng Lu ◽  
Jian Wang ◽  
Chun Bao

A bridge, which is located in the route of typhoon, is considered how to assure normal traffic use against strong winds. As one of the measures, wind barrier is proposed to be set on both sides of the bridge section for reducing wind velocity across it. In this study, an analysis by using CFX, a computational fluid dynamics program, is carried out to investigate the effects of wind barrier. The speed of wind is assumed as 60m/s. To find out an efficient design of the boards, different porosity ratios(r) of the boards is assumed for comparison. The result shows that wind barrier could reduce the wind speed across the bridge effectively.


2016 ◽  
Vol 820 ◽  
pp. 359-364
Author(s):  
Marek Magát ◽  
Ivana Olekšáková ◽  
Juraj Žilinský

In this article are described the results from testing profile of atmospheric boundary layer in BLWT (Boundary layer wind tunnel) in Florence (Prato), Italy with emphasis on comparison of the results with simulations in CFD (Computational fluid dynamics) software OpenFoam. The values are compared with calculated values from EuroCode.


Author(s):  
John Fernandes ◽  
Saeed Ghalambor ◽  
Akhil Docca ◽  
Chris Aldham ◽  
Dereje Agonafer ◽  
...  

The objective of the study is to improve on performance of the current liquid cooling solution for a Multi-Chip Module (MCM) through design of a chip-scale cold plate with quick and accurate thermal analysis. This can be achieved through application of Flow Network Modeling (FNM) and Computational Fluid Dynamics (CFD) in an interactive manner. Thermal analysis of the baseline cold plate design is performed using CFD to determine initial improvement in performance as compared to the original solution, in terms of thermal resistance and pumping power. Fluid flow through the solution is modeled using FNM and verified with results from the CFD analysis. In addition, CFD is employed to generate flow impedance curves of non-standard components within the cold plate, which are used as input for the Hardy Cross method in FNM. Using the verified flow network model, design parameters of different components in the cold plate are modified to promote uniform flow distribution to each active region in the chip-scale solution. Analysis of the resultant design using CFD determines additional improvement in performance over the original solution, if available. Thus, through complementary application of FNM and CFD, a robust cold plate can be designed without requiring expensive fabrication of prototypes and with minimal computational time and resources.


2019 ◽  
Vol 141 (4) ◽  
Author(s):  
Michael P. Kinzel ◽  
Jules W. Lindau ◽  
Robert F. Kunz

This effort investigates advancing cavitation modeling relevant to computational fluid dynamics (CFD) through two strategies. The first aims to reformulate the cavitation models and the second explores adding liquid–vapor slippage effects. The first aspect of the paper revisits cavitation model formulations with respect to the Rayleigh–Plesset equation (RPE). The present approach reformulates the cavitation model using analytic solutions to the RPE. The benefit of this reformulation is displayed by maintaining model sensitivities similar to RPE, whereas the standard models fail these tests. In addition, the model approach is extended beyond standard homogeneous models, to a two-fluid modeling framework that explicitly models the slippage between cavitation bubbles and the liquid. The results indicate a significant impact of slip on the predicted cavitation solution, suggesting that the inclusion of such modeling can potentially improve CFD cavitation models. Overall, the results of this effort point to various aspects that may be considered in future CFD-modeling efforts with the goal of improving the model accuracy and reducing computational time.


2020 ◽  
Vol 12 (2) ◽  
pp. 168781401984047
Author(s):  
Wonyoung Jeon ◽  
Jeanho Park ◽  
Seungro Lee ◽  
Youngguan Jung ◽  
Yeesock Kim ◽  
...  

An experimental and analytical method to evaluate the performance of a loop-type wind turbine generator is presented. The loop-type wind turbine is a horizontal axis wind turbine with a different shaped blade. A computational fluid dynamics analysis and experimental studies were conducted in this study to validate the performance of the computational fluid dynamics method, when compared with the experimental results obtained for a 1/15 scale model of a 3 kW wind turbine. Furthermore, the performance of a full sized wind turbine is predicted. The computational fluid dynamics analysis revealed a sufficiently large magnitude of external flow field, indicating that no factor influences the flow other than the turbine. However, the experimental results indicated that the wall surface of the wind tunnel significantly affects the flow, due to the limited cross-sectional size of the wind tunnel used in the tunnel test. The turbine power is overestimated when the blockage ratio is high; thus, the results must be corrected by defining the appropriate blockage factor (the factor that corrects the blockage ratio). The turbine performance was corrected using the Bahaj method. The simulation results showed good agreement with the experimental results. The performance of an actual 3 kW wind turbine was also predicted by computational fluid dynamics.


Sign in / Sign up

Export Citation Format

Share Document