scholarly journals Environmental monitoring of landfill sites using multi-temporal remote sensing images

2021 ◽  
Author(s):  
Kamil Said Faisal

In this study, multi-temporal Landsat images obtained from the U.S. Geological Survey are used to monitor two landfill sites, the Trail Road landfill (Ottawa, Canada) and the Al-Jleeb landfill (Al-Farwanyah, Kuwait). The objectives are: 1) to study the land surface temperature (LST) of the two landfill sites; 2) investigate the relationship between the LST and landfill gas in the Trail Road landfill; and 3) detect suspicious dumping areas within the Al-Jleeb landfill. It was found that the LST of the landfill sites are always higher than the air temperature and the immediate surroundings. The correlation between the LST and the methane recorded in the Trail Road landfill is not obviously strong, and five suspicious locations were identified within the Al-Jleeb landfill by overlaying the highest LST contours. The study demonstrates the usefulness of remote sensing techniques that can provide supplementary information for landfill monitoring

2021 ◽  
Author(s):  
Kamil Said Faisal

In this study, multi-temporal Landsat images obtained from the U.S. Geological Survey are used to monitor two landfill sites, the Trail Road landfill (Ottawa, Canada) and the Al-Jleeb landfill (Al-Farwanyah, Kuwait). The objectives are: 1) to study the land surface temperature (LST) of the two landfill sites; 2) investigate the relationship between the LST and landfill gas in the Trail Road landfill; and 3) detect suspicious dumping areas within the Al-Jleeb landfill. It was found that the LST of the landfill sites are always higher than the air temperature and the immediate surroundings. The correlation between the LST and the methane recorded in the Trail Road landfill is not obviously strong, and five suspicious locations were identified within the Al-Jleeb landfill by overlaying the highest LST contours. The study demonstrates the usefulness of remote sensing techniques that can provide supplementary information for landfill monitoring


Author(s):  
Carmelo Riccardo Fichera ◽  
Giuseppe Modica ◽  
Maurizio Pollino

One of the most relevant applications of Remote Sensing (RS) techniques is related to the analysis and the characterization of Land Cover (LC) and its change, very useful to efficiently undertake land planning and management policies. Here, a case study is described, conducted in the area of Avellino (Southern Italy) by means of RS in combination with GIS and landscape metrics. A multi-temporal dataset of RS imagery has been used: aerial photos (1954, 1974, 1990), Landsat images (MSS 1975, TM 1985 and 1993, ETM+ 2004), and digital orthophotos (1994 and 2006). To characterize the dynamics of changes during a fifty year period (1954-2004), the approach has integrated temporal trend analysis and landscape metrics, focusing on the urban-rural gradient. Aerial photos and satellite images have been classified to obtain maps of LC changes, for fixed intervals: 1954-1985 and 1985-2004. LC pattern and its change are linked to both natural and social processes, whose driving role has been clearly demonstrated in the case analysed. In fact, after the disastrous Irpinia earthquake (1980), the local specific zoning laws and urban plans have significantly addressed landscape changes.


2021 ◽  
Vol 52 (4) ◽  
pp. 793-801
Author(s):  
Al-Jbouri & Al-Timimi

Agriculture is the most important and most dependent economic activity and influenced by climatic conditions as the climate elements represented by solar radiation, temperature, wind and relative humidity. Therefore, is necessary that analyze and understand the relationship between climate and agriculture. The aim of this study to assessment the relationship between land surface temperature (LST) and normalized difference vegetation index (NDVI) for three regions of Diyala Governorate in Iraq (Al Muqdadya, Baladrooz, and Baquba) by through using of remote sensing techniques and geographic information system (GIS).The Normalized difference vegetation index NDVI and land surface temperature (LST) were used in two of the Landsat-5 ETM + and Landsat-8 OLI satellite imagery during the years 1999 and 2019.  The results showed that increased in NDVI and decreased in LST for 2019, while for 1999 increased in LST and decreased in NDVI for the three regions. Finally, the regression was used to obtain that correlation between LST and NDVI. It was concluded that the correlation coefficient between NDVI and LST is negative, where the strongest correlation was 0.76 for Baquba and weakest correlation was 0.55 for Muqdadyia.


2019 ◽  
Vol 37 (4) ◽  
pp. 386-393
Author(s):  
Jasravia Gill ◽  
Kamil Faisal ◽  
Ahmed Shaker ◽  
Wai Yeung Yan

The disposal of solid waste in a conventional landfill is inevitably associated with potential adverse environmental impacts, resulting in the migration of landfill gas and offensive odors on the surrounding areas. In addition to the obnoxious fumes and hazardous leachate, heat generation is continuously observed within the landfill during the aerobic and anaerobic phases. Despite the negative impacts, such “heat generation” phenomenon can turn into valuable information to aid in detecting unauthorized landfill activities and tracing unrecorded dumping regions. The spatial distribution of waste buried under the ground can be approximated and revealed through measuring the ground surface heat flux. In this study, we demonstrate how to utilize thermal remote sensing techniques to measure the land surface temperature (LST), which can aid in outlining the waste dumping regions within a landfill. The Jeleeb Al-Shuyoukh landfill, located in Kuwait, was used to demonstrate the proposed method, where the record of the exact dumping location was missing during the Gulf war. Ten-year Landsat Thematic Mapper(TM)/Enhanced Thematic Mapper Plus (ETM+) images (1985–1994) were acquired and processed in order to compute the LST within the landfill. Through combining the multi-temporal LST contours and overlay analysis, the most probable dumping regions within the landfill were outlined. A probability map was created to indicate the possible location of waste dumping within the studied landfill. With reference to the 50 boreholes drilled by the Environmental Protection Authority of Kuwait, our results derived during the summer and winter seasons both yielded an overall accuracy of 72%.


2021 ◽  
pp. 912-926
Author(s):  
Fadel Abbas Zwain ◽  
Thair Thamer Al-Samarrai ◽  
Younus I. Al-Saady

Iraq territory as a whole and south of Iraq in particular encountered rapid desertification and signs of severe land degradation in the last decades. Both natural and anthropogenic factors are responsible for the extent of desertification. Remote sensing data and image analysis tools were employed to identify, detect, and monitor desertification in Basra governorate. Different remote sensing indicators and image indices were applied in order to better identify the desertification development in the study area, including the Normalized difference vegetation index (NDVI), Normalized Difference Water Index (NDWI), Salinity index (SI), Top Soil Grain Size Index (GSI) , Land Surface Temperature (LST) , Land Surface Soil Moisture (LSM), and Land Degradation Risk Index (LDI) which was used for the assessment of degradation severity .Three Landsat images, acquired in 1973, 1993, and 2013, were used to evaluate the potential of using remote sensing analysis in desertification monitoring. The approach applied in this study for evaluating this phenomenon was proven to be an effective tool for the recognition of areas at risk of desertification. The results indicated that the arid zone of Basra governorate encounters substantial changes in the environment, such as decreasing surface water, degradation of agricultural lands (as palm orchards and crops), and deterioration of marshlands. Additional changes include increased salinization with the creeping of sand dunes to agricultural areas, as well as the impacts of oil fields and other facilities.


Author(s):  
Élvis da S. Alves ◽  
Roberto Filgueiras ◽  
Lineu N. Rodrigues ◽  
Fernando F. da Cunha ◽  
Catariny C. Aleman

ABSTRACT In regions where the irrigated area is increasing and water availability is reduced, such as the West of the Bahia state, Brazil, the use of techniques that contribute to improving water use efficiency is paramount. One of the ways to improve irrigation is by improving the calculation of actual evapotranspiration (ETa), which among other factors is influenced by soil drying, so it is important to understand this relationship, which is usually accounted for in irrigation management models through the water stress coefficient (Ks). This study aimed to estimate the water stress coefficient (Ks) through information obtained via remote sensing, combined with field data. For this, a study was carried out in the municipality of São Desidério, an area located in western Bahia, using images of the Landsat-8 satellite. Ks was calculated by the relationship between crop evapotranspiration and ETa, calculated by the Simple Algorithm for Evapotranspiration Retrieving (SAFER). The Ks estimated by remote sensing showed, for the development and medium stages, average errors on the order of 5.50%. In the final stage of maize development, the errors obtained were of 23.2%.


1993 ◽  
Vol 44 (2) ◽  
pp. 235 ◽  
Author(s):  
RM Johnston ◽  
MM Barson

This study aimed to develop simple remote-sensing techniques suitable for mapping and monitoring wetlands, using Landsat TM imagery of inland wetland sites in Victoria and New South Wales. A range of classification methods was examined in attempts to map the location and extent of wetlands and their vegetation types. Multi-temporal imagery (winter/spring and summer) was used to display seasonal variability in water regime and vegetation status. Simple density slicing of the mid-infrared band (TM5) from imagery taken during wet conditions was useful for mapping the location and extent of inundated areas. None of the classification methods tested reproduced field maps of dominant vegetation species; however, density slicing of multi-temporal imagery produced classes based on seasonal variation in water regime and vegetation status that are useful for reconnaissance mapping and for examining variability in previously mapped units. Satellite imagery is unlikely to replace aerial photography for detailed mapping of wetland vegetation types, particularly where ecological gradients are steep, as in many riverine systems. However, it has much to offer in monitoring changes in water regime and in reconnaissance mapping at regional scales.


2019 ◽  
pp. 1624-1644
Author(s):  
Gabriele Nolè ◽  
Rosa Lasaponara ◽  
Antonio Lanorte ◽  
Beniamino Murgante

This study deals with the use of satellite TM multi-temporal data coupled with statistical analyses to quantitatively estimate urban expansion and soil consumption for small towns in southern Italy. The investigated area is close to Bari and was selected because highly representative for Italian urban areas. To cope with the fact that small changes have to be captured and extracted from TM multi-temporal data sets, we adopted the use of spectral indices to emphasize occurring changes, and geospatial data analysis to reveal spatial patterns. Analyses have been carried out using global and local spatial autocorrelation, applied to multi-date NASA Landsat images acquired in 1999 and 2009 and available free of charge. Moreover, in this paper each step of data processing has been carried out using free or open source software tools, such as, operating system (Linux Ubuntu), GIS software (GRASS GIS and Quantum GIS) and software for statistical analysis of data (R). This aspect is very important, since it puts no limits and allows everybody to carry out spatial analyses on remote sensing data. This approach can be very useful to assess and map land cover change and soil degradation, even for small urbanized areas, as in the case of Italy, where recently an increasing number of devastating flash floods have been recorded. These events have been mainly linked to urban expansion and soil consumption and have caused loss of human lives along with enormous damages to urban settlements, bridges, roads, agricultural activities, etc. In these cases, remote sensing can provide reliable operational low cost tools to assess, quantify and map risk areas.


2016 ◽  
Author(s):  
Anwar Abdelrahman Aly ◽  
Abdulrasoul Mosa Al-Omran ◽  
Abdulazeam Shahwan Sallam ◽  
Mohammad Ibrahim Al-Wabel ◽  
Mohammad Shayaa Al-Shayaa

Abstract. Vegetation cover (VC) changes detection is essential for a better understanding of the interactions and interrelationships between humans and their ecosystem. Remote sensing (RS) technology is one of the most beneficial tools to study spatial and temporal changes of VC. A case study has been conducted in the agro-ecosystem (AE) of Al-Kharj, in the centre of Saudi Arabia. Characteristics and dynamics of VC changes during a period of 26 years (1987–2013) were investigated. A multi-temporal set of images was processed using Landsat images; Landsat4 TM 1987, Landsat7 ETM+ 2000, and Landsat8 2013. The VC pattern and changes were linked to both natural and social processes to investigate the drivers responsible for the change. The analyses of the three satellite images concluded that the surface area of the VC increased by 107.4 % between 1987 and 2000, it was decreased by 27.5 % between years 2000 and 2013. The field study, review of secondary data and community problem diagnosis using the participatory rural appraisal (PRA) method suggested that the drivers for this change are the deterioration and salinization of both soil and water resources. Ground truth data indicated that the deteriorated soils in the eastern part of the Al-Kharj AE are frequently subjected to sand dune encroachment; while the south-western part is frequently subjected to soil and groundwater salinization. The groundwater in the western part of the ecosystem is highly saline, with a salinity ≥ 6 dS m−1. The ecosystem management approach applied in this study can be used to alike AE worldwide.


Sign in / Sign up

Export Citation Format

Share Document