scholarly journals ASSESSMENT OF RELATIONSHIP BETWEEN LAND SURFACE TEMPERATURE AND NORMALIZED DIFFERENT VEGETATION INDEX USING LANDSAT IMAGES IN SOME REGIONS OF DIYALA GOVERNORATE

2021 ◽  
Vol 52 (4) ◽  
pp. 793-801
Author(s):  
Al-Jbouri & Al-Timimi

Agriculture is the most important and most dependent economic activity and influenced by climatic conditions as the climate elements represented by solar radiation, temperature, wind and relative humidity. Therefore, is necessary that analyze and understand the relationship between climate and agriculture. The aim of this study to assessment the relationship between land surface temperature (LST) and normalized difference vegetation index (NDVI) for three regions of Diyala Governorate in Iraq (Al Muqdadya, Baladrooz, and Baquba) by through using of remote sensing techniques and geographic information system (GIS).The Normalized difference vegetation index NDVI and land surface temperature (LST) were used in two of the Landsat-5 ETM + and Landsat-8 OLI satellite imagery during the years 1999 and 2019.  The results showed that increased in NDVI and decreased in LST for 2019, while for 1999 increased in LST and decreased in NDVI for the three regions. Finally, the regression was used to obtain that correlation between LST and NDVI. It was concluded that the correlation coefficient between NDVI and LST is negative, where the strongest correlation was 0.76 for Baquba and weakest correlation was 0.55 for Muqdadyia.

2019 ◽  
Vol 11 (24) ◽  
pp. 7056 ◽  
Author(s):  
Jae-Ik Kim ◽  
Myung-Jin Jun ◽  
Chang-Hwan Yeo ◽  
Ki-Hyun Kwon ◽  
Jun Yong Hyun

This study investigated how changes in land surface temperature (LST) during 2004 and 2014 were attributable to zoning-based land use type in Seoul in association with the building coverage ratio (BCR), floor area ratio (FAR), and a normalized difference vegetation index (NDVI). We retrieved LSTs and NDVI data from satellite images, Landsat TM 5 for 2004 and Landsat 8 TIRS for 2014 and combined them with parcel-based land use information, which contained data on BCR, FAR, and zoning-based land use type. The descriptive analysis results showed a rise in LST for the low- and medium-density residential land, whereas significant LST decreases were found in high-density residential, semi-residential, and commercial areas over the time period. Statistical results further supported these findings, yielding statistically significant negative coefficient values for all interaction variables between higher-density land use types and a year-based dummy variable. The findings appear to be related to residential densification involving the provision of more high-rise apartment complexes and government efforts to secure more parks and green spaces through urban redevelopment and renewal projects.


2021 ◽  
Vol 13 (1) ◽  
pp. 1561-1577
Author(s):  
Sajjad Hussain ◽  
Muhammad Mubeen ◽  
Ashfaq Ahmad ◽  
Nasir Masood ◽  
Hafiz Mohkum Hammad ◽  
...  

Abstract The rapid increase in urbanization has an important effect on cropping pattern and land use/land cover (LULC) through replacing areas of vegetation with commercial and residential coverage, thereby increasing the land surface temperature (LST). The LST information is significant to understand the environmental changes, urban climatology, anthropogenic activities, and ecological interactions, etc. Using remote sensing (RS) data, the present research provides a comprehensive study of LULC and LST changes in water scarce and climate prone Southern Punjab (Multan region), Pakistan, for 30 years (from 1990 to 2020). For this research, Landsat images were processed through supervised classification with maps of the Multan region. The LULC changes showed that sugarcane and rice (decreased by 2.9 and 1.6%, respectively) had less volatility of variation in comparison with both wheat and cotton (decreased by 5.3 and 6.6%, respectively). The analysis of normalized difference vegetation index (NDVI) showed that the vegetation decreased in the region both in minimum value (−0.05 [1990] to −0.15 [2020]) and maximum value (0.6 [1990] to 0.54 [2020]). The results showed that the built-up area was increased 3.5% during 1990–2020, and these were some of the major changes which increased the LST (from 27.6 to 28.5°C) in the study area. The significant regression in our study clearly shows that NDVI and LST are negatively correlated with each other. The results suggested that increasing temperature in growing period had a greatest effect on all types of vegetation. Crop-based classification aids water policy managers and analysts to make a better policy with enhanced information based on the extent of the natural resources. So, the study of dynamics in major crops and surface temperature through satellite RS can play an important role in the rural development and planning for food security in the study area.


Author(s):  
Ibra Lebbe Mohamed Zahir

Land Surface Temperature is a one of the key variable of Global climate changes and model which estimate radiating budget in heat balance as control of climate model. It is a major influenced factor by the ability of the surface emissivity. In this study, were used Landsat 8 satellite image that have Operational Land Imager and Thermal Infrared Sensor to calculate Land Surface Temperature through geospatial technology over Ampara district, Sri Lanka. The Land Surface Temperature was estimated with respect to Land Surface Emissivity and Normalized Difference Vegetation Index values determined from the Red and Near Infrared channels. Land Surface Emissivity was processed directly by the thermal Infrared bands. Pixels based calculation were used to effort at LANDSAT 8 images that thermal Band 10 various dates in this study. The results were achievable to compute Normalized Difference Vegetation Index, Land Surface Emissivity, and Land Surface Temperature with applicable manner to compare with land use/ land cover data. It determines and predicts the changes of surface temperature to favorable to decision making process for the society. Study area faces seasonal drought in Sri Lanka, the prediction method that how land can be efficiently used with the present condition. Therefore, the Land Surface Temperature estimation can prove whether new irrigation systems for agricultural activities or can transformed source of energy into useful form that introducing solar hubs for energy production in future.


Author(s):  
O. Orhan ◽  
M. Yakar

The main purpose of this paper is to investigate multi-temporal land surface temperature (LST) and Normalized Difference Vegetation Index (NDVI) changes of Konya in Turkey using remotely sensed data. Konya is located in the semi-arid central Anatolian region of Turkey and hosts many important wetland sites including Salt Lake. Six images taken by Landsat-5 TM and Landsat 8- OLI satellites were used as the basic data source. These raw images were taken in 1984, 2011 and 2014 intended as long-term and short-term. Firstly, those raw images was corrected radiometric and geometrically within the scope of project. Three mosaic images were obtained by using the full-frame images of Landsat-5 TM / 8- OLI which had been already transformed comparison each other. Then, Land Surface Temperature (LST), Normalized Difference Vegetation Index (NDVI) maps have been produced to determine the dimension of the drought. The obtained results showed that surface temperature rates in the basin increased about 5°C between 1984 and 2014 as long periods, increased about 2-3°C between 2011and 2014 as short periods. Meteorological data supports the increase in temperature.


2018 ◽  
Vol 19 (2) ◽  
pp. 145 ◽  
Author(s):  
Widya Ningrum ◽  
Ida Narulita

ABSTRACTThe rapid population growth and development of infrastructure in the Bandung basin has triggered an uncontrolled land use changes. The changes of land use will impact on land surface temperature distribution. Finally, these changes will give influence on climate. Land surface temperature is one of the important climatic elements in the energy balance. Changes in land surface temperature variations will potentially change other elements of the climate. The purpose of this paper is to obtain and to analyze the changes of surface temperature distribution in Bandung basin using multi temporal satellite data processing that is Landsat 5 and Landsat 8 in 2004, 2009 and 2014. Near Infrared Channel (Near Infrared/NIR) and visible wave channels (Visible band) have used to obtain the value Normalized Difference Vegetation Index/NDVI index and Albedo. Land and vegetation emissivity value and thermal band have used to determine land surface temperature. The results showed that the surface temperature distribution of Bandung basin has been changes characterized by the presence of two hotspot characters i.e. hot areas in urban and hot areas in non-urban area. The area is characterized by decreasing vegetation index values, increasing albedo values and increasing on surface temperature.  Land Surface Temperatures average value increased by 1.3°C. Land surface temperature tends to rise supposed as a result of changes in vegetated area into open area and the build area  Keywords: land surface temperature, normalized difference vegetation index, albedoABSTRAKPesatnya pertumbuhan penduduk dan perkembangan infrastruktur di cekungan Bandung telah memicu perubahan tutupan lahan yang tidak terkendali. Perubahan tutupan lahan akan mempengaruhi distribusi suhu permukaan. Hal tersebut pada akhirnya nanti akan mempengaruhi iklim. Suhu permukaan merupakan salah satu unsur iklim yang penting dalam neraca energi. Perubahan variasi suhu permukaan berpotensi mengubah unsur unsur iklim yang lainnya. Tujuan makalah ini adalah untuk mengetahui dan menganalisis perubahan distribusi suhu permukaan di cekungan Bandung melalui pengolahan data satelit multi waktu yaitu Landsat 5 dan Landsat 8 tahun 2004, 2009, 2014 dan 2016. Kanal Inframerah Dekat (Near Infrared/NIR) dan kanal gelombang tampak (Visible band) digunakan untuk memperoleh nilai Indeks Kehijauan Vegetasi (Normalized Difference Vegetation Index/NDVI) dan Albedo. Nilai emisivitas dari tanah dan vegetasi serta Band termal digunakan untuk menentukan nilai Suhu Permukaan Tanah.Hasil penelitian menunjukkan bahwa di cekungan Bandung telah terjadi perubahan distribusi suhu permukaan yang dicirikan oleh adanya dua karakter hotspot yaitu daerah panas di daerah urban dan daerah panas di daerah non-urban. Daerah tersebut dicirikan menurunnya nilai indeks vegetasi, menurunnya nilai albedo dan meningkatnya nilai suhu permukaan tanah. Nilai rataan Suhu Permukaan Tanah tahun 2005 - 2014 meningkat sebesar 1.3°C. Kecenderungan naik ini diduga sebagai akibat adanya perubahan tutupan lahan bervegetasi menjadi daerah yang lebih terbuka dan daerah terbangun.Kata kunci: suhu permukaan, indeks kehijauan vegetasi, albedo 


Author(s):  
Christopher Ihinegbu ◽  
Taiwo Ogunwumi

AbstractDrought is the absence or below-required supply of precipitation, runoff and or moisture for an extended time period. Modelling drought is relevant in assessing drought incidence and pattern. This study aimed to model the spatial variation and incidence of the 2018 drought in Brandenburg using GIS and remote sensing. To achieve this, we employed a Multi-Criteria Approach (MCA) by using three parameters including Precipitation, Land Surface Temperature and Normalized Difference Vegetation Index (NDVI). We acquired the precipitation data from Deutsche Wetterdienst, Land Surface Temperature and NDVI from Landsat 8 imageries on the USGS Earth Explorer. The datasets were analyzed using ArcGIS 10.7. The information from these three datasets was used as parameters in assessing drought prevalence using the MCA. The MCA was used in developing the drought model, ‘PLAN’, which was used to classify the study area into three levels/zones of drought prevalence: moderate, high and extreme drought. We went further to quantify the agricultural areas affected by drought in the study area by integrating the land use map. Results revealed that 92% of the study area was severely and highly affected by drought especially in districts of Oberhavel, Uckermark, Potsdam-Staedte, and Teltow-Flaeming. Finding also revealed that 77.54% of the total agricultural land falls within the high drought zones. We advocated for the application of drought models (such as ‘PLAN’), that incorporates flexibility (tailoring to study needs) and multi-criteria (robustness) in drought assessment. We also suggested that adaptive drought management should be championed using drought prevalence mapping.


Author(s):  
Paul Macarof ◽  
Stefan Groza ◽  
Florian Statescu

Abstract In this paper is investigating correlation between land surface temperature and vegetation indices (Normalized Difference Vegetation Index - NDVI, Enhanced Vegetation Index 2 - EVI2 and Modified Soil Adjusted Vegetation Index - MSAVI) using Landsat images for august, the warmest month, for study area. Iaşi county is considered as study area in this research. Study Area is geographically situated on latitude 46°48'N to 47°35'N and longitude 26°29'E to 28°07'E. Land surface temperature (LST) can be used to define the temperature distribution at local, regional and global scale. First use of LST was in climate change models. Also LST is use to define the problems associated with the environment. A Vegetation Indices (VI) is a spectral transformation what suppose spatial-temporal intercomparisons of terrestrial photosynthetic dynamics and canopy structural variations. Landsat5 TM, Landsat7 ETM+ and Landsat8 OLI, all data were used in this study for modeling. Landsat images was taken for august 1994, 2006 and 2016. Preprocessing of Landsat 5/7/8 data stage represent that process that prepare images for subsequent analysis that attempts to compensate/correct for systematic errors. It was observed that the “mean” parameter for LST increased from 1994 to 2016 at approximately 5°C. Analyzing the data from VI, it can be assumed that the built-up area increased for the Iasi county, while the area occupied by dense vegetation has decreased. Many researches indicated that between LST and VI is a linear relationship. It is noted that the R2 values for the LST-VI correlations decrease from 1994 (i.g.R2= 0.72 for LST-NDVI) in 2016 (i.g.R2= 0.23 for LST-NDVI). In conclusion, these correlation can be used to study vegetation health, drought damage, and areas where Urban Heat Island can occur.


2019 ◽  
Vol 3 ◽  
pp. 529
Author(s):  
Mega Adeanti ◽  
Muhammad Chaidir Harist

Kabupaten Bogor merupakan salah satu kabupaten yang saat ini pembangunannya cukup berkembang. Pada tahun 2016 jumlah penduduk di Kabupaten Bogor berjumlah 5.715.009 jiwa. Bertambahnya penduduk menyebabkan berkurangnya lahan dengan tutupan vegetasi menjadi daerah yang terbangun, dari bertambahnya lahan terbangun meyebabkan meningkatnya suhu di Kabupaten Bogor. Dengan pemanfaatan Sistem Informasi Geografis (SIG) dapat diketahui peningkatan suhu akibat dari padatnya bangunan di Kabupaten Bogor. Melalui pengolahan Citra Landsat 8 OLI/TIRS C1 Level-1 dengan ukuran 30 x 30 m tahun 2018 digunakan metode Normalized Difference Vegetation Index (NDVI) untuk mengetahui indeks kerapatan vegetasi, Normalized Difference Built Index (NDBI) untuk mengetahui kerapatan bangunan, dan metode Land Surface Temperature (LST) untuk mengetahui suhu permukaan di Kabupaten Bogor. Hasil yang didapatkan dari penelitian ini adalah semakin rapatnya bangunan maka suhu semakin tinggi dan sebaliknya, begitu juga dengan luas dari wilayah yang mengalami kenaikan suhu.


Author(s):  
R. Bala ◽  
R. Prasad ◽  
V. P. Yadav ◽  
J. Sharma

<p><strong>Abstract.</strong> The temperature rise in urban areas has become a major environmental concern. Hence, the study of Land surface temperature (LST) in urban areas is important to understand the behaviour of different land covers on temperature. Relation of LST with different indices is required to study LST in urban areas using satellite data. The present study focuses on the relation of LST with the selected indices based on different land cover using Landsat 8 OLI (Operational Land Imager) and TIRS (Thermal Infrared Sensor) data in Varanasi, India. A regression analysis was done between LST and Normalized Difference Vegetation index (NDVI), Normalized Difference Soil Index (NDSI), Normalized Difference Built-up Index (NDBI) and Normalized Difference Water Index (NDWI). The non-linear relations of LST with NDVI and NDWI were observed, whereas NDBI and NDSI were found to show positive linear relation with LST. The correlation of LST with NDSI was found better than NDBI. Further analysis was done by choosing 25 pure pixels from each land cover of water, vegetation, bare soil and urban areas to determine the behaviour of indices on LST for each land cover. The investigation shows that NDSI and NDBI can be effectively used for study of LST in urban areas. However, NDBI can explain urban LST in the better way for the regions without water body.</p>


Author(s):  
O. Orhan ◽  
M. Yakar

The main purpose of this paper is to investigate multi-temporal land surface temperature (LST) and Normalized Difference Vegetation Index (NDVI) changes of Konya in Turkey using remotely sensed data. Konya is located in the semi-arid central Anatolian region of Turkey and hosts many important wetland sites including Salt Lake. Six images taken by Landsat-5 TM and Landsat 8- OLI satellites were used as the basic data source. These raw images were taken in 1984, 2011 and 2014 intended as long-term and short-term. Firstly, those raw images was corrected radiometric and geometrically within the scope of project. Three mosaic images were obtained by using the full-frame images of Landsat-5 TM / 8- OLI which had been already transformed comparison each other. Then, Land Surface Temperature (LST), Normalized Difference Vegetation Index (NDVI) maps have been produced to determine the dimension of the drought. The obtained results showed that surface temperature rates in the basin increased about 5°C between 1984 and 2014 as long periods, increased about 2-3°C between 2011and 2014 as short periods. Meteorological data supports the increase in temperature.


Sign in / Sign up

Export Citation Format

Share Document