Optimal Net-Zero Cost Deep Energy Retrofit of Low-Rise Social Housing Townhouses

2021 ◽  
Author(s):  
Lubna Al-Tameemi

Whole building optimization retrofits have been performed for two townhouses in four locations with different climates to find both energy efficiency and cost-effective retrofit solutions across a thirty-year time span analysis. The objective is to find deep energy retrofit packages that can be used for large scale social housing retrofit. The multi-objective optimizations aim to achieve the least annualized related costs, lower initial and operational energy related costs and substantial carbon savings by analyzing one natural gas heated option and four electric heated options (baseboard heating system, central air-source heat pump, ductless mini-split heat pump and ground-source heat pump). Results reveal that prescriptive deep energy retrofit solutions achieved between 78% to 100% site energy reductions through building enclosures improvement, upgrades of HVAC and water heating systems, upgrades of appliances and lighting, and the addition of onsite renewable energy generation. Results also indicate that ductless mini-split heat pump (MSHP) optimized model has lower long-term costs and a shorter modified payback period than the optimized gas-heated model at all locations; thus suggesting that heating electrification is cost effective and can reduce the majority of operational GHG emissions of existing housing stock in locations with low carbon intensity electric grid. (834KB) https://digital.library.ryerson.ca/islandora/object/RULA:8613/datastream/Calc_Lubna/view (284KB) https://digital.library.ryerson.ca/islandora/object/RULA:8613/datastream/AnAl_Lubna/view (4 MB) https://digital.library.ryerson.ca/islandora/object/RULA:8613/datastream/AnHr_Lubna/view (5MB) https://digital.library.ryerson.ca/islandora/object/RULA:8613/datastream/Wind_Lubna/view (6MB) https://digital.library.ryerson.ca/islandora/object/RULA:8613/datastream/Toro_Lubna/view (6MB) https://digital.library.ryerson.ca/islandora/object/RULA:8613/datastream/Thby_Lubna/view (6MB) https://digital.library.ryerson.ca/islandora/object/RULA:8613/datastream/Otta_Lubna/view

2021 ◽  
Author(s):  
Lubna Al-Tameemi

Whole building optimization retrofits have been performed for two townhouses in four locations with different climates to find both energy efficiency and cost-effective retrofit solutions across a thirty-year time span analysis. The objective is to find deep energy retrofit packages that can be used for large scale social housing retrofit. The multi-objective optimizations aim to achieve the least annualized related costs, lower initial and operational energy related costs and substantial carbon savings by analyzing one natural gas heated option and four electric heated options (baseboard heating system, central air-source heat pump, ductless mini-split heat pump and ground-source heat pump). Results reveal that prescriptive deep energy retrofit solutions achieved between 78% to 100% site energy reductions through building enclosures improvement, upgrades of HVAC and water heating systems, upgrades of appliances and lighting, and the addition of onsite renewable energy generation. Results also indicate that ductless mini-split heat pump (MSHP) optimized model has lower long-term costs and a shorter modified payback period than the optimized gas-heated model at all locations; thus suggesting that heating electrification is cost effective and can reduce the majority of operational GHG emissions of existing housing stock in locations with low carbon intensity electric grid. (834KB) https://digital.library.ryerson.ca/islandora/object/RULA:8613/datastream/Calc_Lubna/view (284KB) https://digital.library.ryerson.ca/islandora/object/RULA:8613/datastream/AnAl_Lubna/view (4 MB) https://digital.library.ryerson.ca/islandora/object/RULA:8613/datastream/AnHr_Lubna/view (5MB) https://digital.library.ryerson.ca/islandora/object/RULA:8613/datastream/Wind_Lubna/view (6MB) https://digital.library.ryerson.ca/islandora/object/RULA:8613/datastream/Toro_Lubna/view (6MB) https://digital.library.ryerson.ca/islandora/object/RULA:8613/datastream/Thby_Lubna/view (6MB) https://digital.library.ryerson.ca/islandora/object/RULA:8613/datastream/Otta_Lubna/view


2021 ◽  
Author(s):  
Brandon Wilbur

Whole-building model optimizations have been performed for a single-detached house in 5 locations with varying climates, electricity emissions factors, and energy costs. The multi-objective optimizations determine the life-cycle cost vs. operational greenhouse gas emissions Pareto front to discover the 30-year life-cycle least-cost building design heated 1) with natural gas, and 2) electrically using a) central air-source heat pump, b) ductless mini-split heat pump c)ground-source heat pump, and d) electric baseboard, accounting for both initial and operational energy-related costs. A net-zero carbon design with grid-tied photovoltaics is also optimized. Results indicate that heating system type influences the optimal enclosure design, and that neither building total energy use, nor space heating demand correspond to GHG emissions across heating system types. In each location, at least one type of all-electric design has a lower life-cycle cost than the optimized gas-heated model, and such designs can mitigate the majority of operational GHG emissions from new housing in locations with a low carbon intensity electricity supply.


2021 ◽  
Author(s):  
Brandon Wilbur

Whole-building model optimizations have been performed for a single-detached house in 5 locations with varying climates, electricity emissions factors, and energy costs. The multi-objective optimizations determine the life-cycle cost vs. operational greenhouse gas emissions Pareto front to discover the 30-year life-cycle least-cost building design heated 1) with natural gas, and 2) electrically using a) central air-source heat pump, b) ductless mini-split heat pump c)ground-source heat pump, and d) electric baseboard, accounting for both initial and operational energy-related costs. A net-zero carbon design with grid-tied photovoltaics is also optimized. Results indicate that heating system type influences the optimal enclosure design, and that neither building total energy use, nor space heating demand correspond to GHG emissions across heating system types. In each location, at least one type of all-electric design has a lower life-cycle cost than the optimized gas-heated model, and such designs can mitigate the majority of operational GHG emissions from new housing in locations with a low carbon intensity electricity supply.


2011 ◽  
Vol 374-377 ◽  
pp. 425-429 ◽  
Author(s):  
Pei Pei Wang ◽  
Wei Ding Long

China's rapid urbanization makes low-carbon become the pursuit of sustainable development society. In this paper, a new district cooling and heating system named regional distributed heat pump energy bus system is introduced, which can make large scale integration of renewable energy sources or untapped energy sources be used for air-conditioning. This article briefly describes the system concept, applicability, design principles, analysis of the system topological structure and outdoor pipe network heat and pressure loss. Ultimately analyze energy bus system energy consumption compared with DHC system and water supply system by examples.


2021 ◽  
Author(s):  
Matt Pitcher ◽  
Martin van 't Hoff ◽  
Narik Basmajian

Abstract The Energy Transition mandates durable long-term solutions for reducing greenhouse gas (GHG) emissions by addressing future energy needs in terms of generation, storage and utilization. Hydrogen is essential to low-carbon energy solutions, particularly in the "difficult-to-decarbonize" segment of energy markets. Deeply decarbonized, cost-effective hydrogen production solutions are already accessible at industrial scale, for both new plants and for retrofits. For newly built plants we easily arrive at deeply reduced carbon footprints, and KPI's comparable to the most competitive green solutions. Retrofitting existing hydrogen plants to "blue plants" is not only feasible, but is a particularly cost-effective carbon reduction measure. This paper addresses carbon intensity of various hydrogen production routes: ranging from traditional grey hydrogen (itself with proven options for carbon mitigation) through blue hydrogen with various schemes and capture depths, as well as green hydrogen (generally by electrolysis).


2021 ◽  
Author(s):  
Deepthi Swamy ◽  
Apurba Mitra ◽  
Varun Agarwal ◽  
Megan Mahajan ◽  
Robbie Orvis

India is currently the world’s third-largest emitter of greenhouse gases (GHGs) after China and the United States and is set to experience continued growth in its population, economy, and energy consumption. Exploring low-carbon development pathways for India is therefore crucial for achieving the goal of global decarbonization. India has pledged to reduce the emission intensity of its gross domestic product (GDP) by 33–35 per cent relative to 2005 levels by 2030 through its Nationally Determined Contribution (NDC), among other related targets for the renewable energy and forestry sectors. Further, countries, including India, are expected to respond to the invitation of the Conference of the Parties (COP) to the Paris Agreement to communicate new or updated NDCs with enhanced ambition and long-term low-GHG development strategies for 2050. To design effective policy packages to support the planning and achievement of such climate targets, policymakers need to identify policies that can reduce GHG emissions in a timely and cost-effective manner, while meeting development-related and other national objectives. The India Energy Policy Simulator (India EPS), an open-source, system dynamics model, can enable an integrated quantitative assessment of different cross-sectoral climate policy packages for India through 2050 and their implications for key variables of interest such as emissions, GDP, and jobs. The tool was developed by Energy Innovation LLC and adapted for India in partnership with World Resources Institute. It is available for open access through a Web interface as well as a downloadable application. This technical note describes the structure, input data sources, assumptions, and limitations of the India EPS, as well as the setup and key results of its reference scenario, referred to as the business-as-usual (BAU) scenario in the model. It is intended as an update to the first technical note on the India EPS (Mangan et al. 2019) and accounts for the changes incorporated into the model since the first version.


2019 ◽  
Vol 11 (23) ◽  
pp. 6783
Author(s):  
Camila Gramkow ◽  
Annela Anger-Kraavi

The recent IPCC Special Report on global warming of 1.5 °C emphasizes that rapid action to reduce greenhouse gas (GHG) emissions is vital to achieving the climate mitigation goals of the Paris Agreement. The most-needed substantial upscaling of investments in GHG mitigation options in all sectors, and particularly in manufacturing sectors, can be an opportunity for a green economic development leap in developing countries. Here, we use the Brazilian manufacturing sectors as an example to explore a transformation of its economy while contributing to the Paris targets. Projections of Brazil’s economic futures with and without a portfolio of fiscal policies to induce low carbon investments are produced up to 2030 (end year of Brazil’s Nationally Determined Contribution—NDC), by employing the large-scale macro econometric Energy-Environment-Economy Model, E3ME. Our findings highlight that the correct mix of green stimulus can help modernize and decarbonize the Brazilian manufacturing sectors and allow the country’s economy to grow faster (by up to 0.42% compared to baseline) while its carbon dioxide (CO2) emissions decline (by up to 14.5% in relation to baseline). Investment levels increase, thereby strengthening exports’ competitiveness and alleviating external constraints to long-term economic growth in net terms.


2014 ◽  
Vol 41 (4) ◽  
pp. 285-293 ◽  
Author(s):  
Eugene A. Mohareb ◽  
Adrian K. Mohareb

One of the most significant sources of greenhouse gas (GHG) emissions in Canada is the buildings sector, with over 30% of national energy end-use occurring in buildings. Energy use must be addressed to reduce emissions from the buildings sector, as nearly 70% of all Canada’s energy used in the residential sector comes from fossil sources. An analysis of GHG emissions from the existing residential building stock for the year 2010 has been conducted for six Canadian cities with different climates and development histories: Vancouver, Edmonton, Winnipeg, Toronto, Montreal, and Halifax. Variation across these cities is seen in their 2010 GHG emissions, due to climate, characteristics of the building stock, and energy conversion technologies, with Halifax having the highest per capita emissions at 5.55 tCO2e/capita and Montreal having the lowest at 0.32 tCO2e/capita. The importance of the provincial electricity grid’s carbon intensity is emphasized, along with era of construction, occupancy, floor area, and climate. Approaches to achieving deep emissions reductions include innovative retrofit financing and city level residential energy conservation by-laws; each region should seek location-appropriate measures to reduce energy demand within its residential housing stock, as well as associated GHG emissions.


2015 ◽  
Vol 9 (4) ◽  
pp. 45-52
Author(s):  
Csaba Fogarassy ◽  
Bálint Horváth ◽  
Linda Szőke ◽  
Attila Kovács

The topic of the present study deals with the changes and future trends of the European Union’s climate policy. In addition, it studies the manner in which Hungary’s transport sector contributes to the success of the above. The general opinion of Hungarian climate policy is that the country has no need of any substantial climate policy measures, since it will be able to reach its emission reduction targets anyway. This is mostly true, because the basis year for the long term goals is around the middle/end of the 1980’s, when Hungary’s pollution indices were entirely different than today due to former large-scale industrial production. With the termination of these inefficient energy systems, Hungary has basically been “performing well” since the change in political system without taking any specific steps in the interest of doing so. The analysis of the commitments for the 2020-2030 climate policy planning period, which defined emissions commitments compared to 2005 GHG emissions levels, has also garnered similar political reactions in recent years. Thus, it is not the issue of decreasing GHG emissions but the degree to which possible emissions can be increased stemming from the conditions and characteristics of economic growth that is important from the aspect of economic policy. In 2005, the Hungarian transport sector’s emissions amounted to 11 million tons, which is equal to 1.2% of total EU emissions, meaning it does not significantly influence total transport emissions. However, the stakes are still high for developing a low GHG emission transport system, since that will decide whether Hungary can avoid those negative development tendencies that have plagued the majority of Western European transport systems. Can Budapest avoid the scourge of perpetual smog and traffic jams? Can it avert the immeasurable accumulation of externalities on the capital city’s public bypass roads caused by having road transport conduct goods shipping? JEL classification: Q58


2021 ◽  
Vol 13 (19) ◽  
pp. 10927
Author(s):  
Anton Orlov ◽  
Elena Klyuchnikova ◽  
Anna Korppoo

Most municipal solid waste (MSW) in Russia is disposed of in landfills, and only a relatively small fraction is recycled. The landfilling of waste leads to greenhouse gas (GHG) emissions, and air and groundwater pollution. However, recently, there have been some initiatives to improve waste management in the country. We assessed the economic and environmental benefits of waste recycling in the Murmansk region, in which a new waste recycling plant has been operating since 2019. We found that MSW recycling in the Murmansk region has induced a small, positive, job creation effect and could potentially lead to a non-negligible reduction in GHG emissions. Extrapolating the results from this case study to the country level, we found that recycling landfilled MSW in Russia could save approximately 154 million tons of GHG emissions in carbon dioxide equivalents annually, which is comparable to the total CO2 emissions from Algeria. The positive environmental and health-related impacts from the extensive implementation of MSW recycling in the country could be substantial. From this case study, we also learned that one of the biggest challenges for the waste recycling company in the Murmansk region is finding profitable markets for recycled materials. Moreover, due to the high investment and operational costs, recycling MSW led to a substantial increase in communal fees. However, there is potential to make waste recycling more cost effective. Most MSW in the Murmansk region is still separated at the recycling plant, while separating waste at the source could substantially reduce operational costs. Other challenges in the large-scale implementation of MSW recycling in Russia, such as a lack of investments and the population’s willingness to recycle waste, are also discussed.


Sign in / Sign up

Export Citation Format

Share Document