scholarly journals Contribution of hardwood trees to budworm – parasitoid food web dynamics

2021 ◽  
Author(s):  
Christopher J. Greyson-Gaito ◽  
Sarah J. Dolson ◽  
Glen Forbes ◽  
Rosanna Lamb ◽  
Wayne E. MacKinnon ◽  
...  

A major pest of Atlantic forests is the spruce budworm caterpillar which outbreaks every 35 years and causes large scale tree mortality. Historically, budworm management has largely ignored other species in the food web. Broadening the focus could reduce budworm outbreaks while balancing the multiple demands on our forests. However, the food web surrounding budworm including other caterpillar species that are attacked by budworm parasitoids has been relatively undersampled and under-researched. Therefore, we tested two hypotheses: the alternating hardwood-softwood parasitoids hypothesis where parasitoids attack other caterpillars on hardwoods when budworm are rare and attack budworm on balsam fir or other softwoods when budworm are plentiful, and the mixed stands natural enemies hypothesis where stands with a mixture of softwood and hardwood trees harbour greater abundances and diversity of budworm parasitoids. We tested these hypotheses using stable isotope analysis of budworm parasitoids and through community analyses of parasitoids sampled along a hardwood gradient. We found indications that parasitoids do attack caterpillars on hardwoods and budworm on balsam fir, but found mixed results for the natural enemies hypothesis. Our study highlights the importance for budworm management of understanding the dynamics of the food web surrounding budworm.

1989 ◽  
Vol 79 (1) ◽  
pp. 115-121 ◽  
Author(s):  
Clifford S. Gold ◽  
Miguel A. Altieri ◽  
Anthony C. Bellotti

AbstractCassava intercropped with cowpea in Colombia had lower numbers of Aleurotrachelus socialis Bondar and Trialeurodes variabilis (Quaintance) per leaf and per plant than did monoculture cassava. These differences persisted for up to six months after harvest of the cowpea. These results are examined in light of the natural enemies hypothesis, which suggests that natural enemies may be favoured in diversified systems, thereby reducting herbivore load. In this regard, the effects of different cropping systems on the whitefly predator Delphastus pusillus (Le Conte) and on the combined action of the parasitoids Amitus aleurodinus Haldeman and Eretmocerus aleyrodiphaga (Risbec) are discussed. D. pusillus displayed a functional responce and was more abundant in monocultures than in intercrops. Predator:prey ratios were similar between treatments and so low that predation appeared to have little impact on whitefly numbers. Parasitism levels of Aleurotrachelus socialis were not affected by crop combinations. The data suggest that the activity of the natural enemies does not explain cropping system effects on cassava whitefly populations.


2019 ◽  
Author(s):  
Christopher J. Greyson-Gaito ◽  
Kevin S. McCann ◽  
Jochen Fründ ◽  
Christopher J. Lucarotti ◽  
M. Alex Smith ◽  
...  

AbstractThe world is astoundingly variable, and individuals to whole communities must respond to variability to survive. One example of nature’s variability is the massive fluctuations in spruce budworm (Choristoneura fumiferana Clemens, Lepidoptera: Tortricidae) populations that occur over 35 years. We examined how the parasitoid community altered its parasitism of budworm and other caterpillar species in response to these fluctuations. Budworm and other caterpillar species were sampled from balsam fir in three plots for 14 years in Atlantic Canada, and then reared to identify any emerging parasitoids. We found that the parasitoid community showed a simple linear, indiscriminate response (i.e., no preference, where densities purely dictated parasitism rates) to changes in budworm densities relative to other caterpillar species on balsam fir. We also observed strong changes in topology and distributions of interaction strengths between the parasitoids, budworm and other caterpillar species as budworm densities fluctuated. Our study contributes to the suggestion that hardwood trees are a critical part of the budworm-parasitoid food web, where parasitoids attack other caterpillar species on hardwood trees when budworm populations are low. Taken together, our study shows that a parasitoid community collectively alters species interactions in response to variable budworm densities, fundamentally shifting food web pathways.


2021 ◽  
pp. 1-15
Author(s):  
Christopher J. Greyson-Gaito ◽  
Kevin S. McCann ◽  
Jochen Fründ ◽  
Christopher J. Lucarotti ◽  
M. Alex Smith ◽  
...  

Abstract The world is astoundingly variable, and organisms – from individuals to whole communities – must respond to variability to survive. One example of nature’s variability is the fluctuations in populations of spruce budworm, Choristoneura fumiferana Clemens (Lepidoptera: Tortricidae), which cycle every 35 years. In this study, we examined how a parasitoid community altered its parasitism of budworm and other caterpillar species in response to these fluctuations. Budworm and other caterpillar species were sampled from balsam fir (Pinaceae) in three plots for 14 years in Atlantic Canada, then were reared to identify any emerging parasitoids. We found that the parasitoid community generally showed an indiscriminate response (i.e., no preference, where frequencies dictated parasitism rates) to changes in budworm frequencies relative to other caterpillar species on balsam fir. We also observed changes in topology and distributions of interaction strengths between the parasitoids, budworm, and other caterpillar species as budworm frequencies fluctuated. Our study contributes to the hypothesis that hardwood trees are a critical part of the budworm–parasitoid food web, where parasitoids attack other caterpillar species on hardwood trees when budworm populations are low. Taken together, our results show that a parasitoid community collectively alters species interactions in response to variable budworm frequencies, thereby fundamentally shifting food-web pathways.


2021 ◽  
Author(s):  
Alex Stemmelen ◽  
Hervé Jactel ◽  
Eckehard Brockerhoff ◽  
Bastien Castagneyrol

The natural enemies hypothesis predicts that the abundance and diversity of antagonists such as predators and parasitoids of herbivores increases with the diversity of plants, which can lead to more effective top-down control of insect herbivores. However, although the hypothesis has received large support in agricultural systems, fewer studies have been conducted in forest ecosystems and a comprehensive synthesis of previous research is still lacking. We conducted a meta-analysis of 65 publications comparing the diversity, abundance or activity of various groups of natural enemies (including birds, bats, spiders and insect parasitoids) in pure vs. mixed forest stands. We tested the effects of forest biome, natural enemy taxon and type of study (managed vs experimental forest). We found a significant positive effect of forest tree diversity on natural enemy abundance and diversity but not on their activity. The effect of tree diversity on natural enemies was stronger towards lower latitudes but was not contingent on the natural enemy taxon. Overall, our study contributes substantially toward a better understanding of the natural enemies hypothesis in forest systems and provides new insights about the mechanisms involved. Furthermore, we outline potential avenues for strengthening forest resistance to the growing threat of herbivorous insects.


1980 ◽  
Vol 10 (4) ◽  
pp. 559-563 ◽  
Author(s):  
François Potvin

The impact of the current budworm outbreak on deer (Odocoileusvirginianusborealis Miller) was studied from 1972 to 1979 in a wintering area located at the northern extremity of Témiscouata Lake, Québec. This area encompassed 20 km2 and consisted mostly of balsam fir (Abiesbalsamea (L.) Mill.) and spruce (Piceaglauca (Moench) Voss) stands which suffered high mortality in 1975. The proportion of coniferous cover dropped from 66 to 29% as a result of the outbreak. Nevertheless, the area occupied by deer and the deer population itself remained quite stable. Deer progressively deserted balsam fir - spruce stands and sought shelter in cedar (Thujaoccidentalis L.) stands that are well distributed throughout the study area. Elimination of balsam fir from the shrub layer of the more severely affected stands resulted in a loss of two-thirds of the browse biomass and invasion by raspberry (Rubusidaeus L.). Conversely, tree lichens on dead trees have become an important new food source. The impact of large-scale tree mortality by the budworm in wintering areas sharing the same ecological conditions may depend on the presence or absence of cedar stands as an alternative coniferous cover type.


1996 ◽  
Vol 26 (9) ◽  
pp. 1620-1628 ◽  
Author(s):  
Qiong Su ◽  
Ted D. Needham ◽  
David A. MacLean

Changing stand composition by increasing hardwood content has been suggested as a long-term method for reducing susceptibility and vulnerability of balsam fir (Abiesbalsamea (L.) Mill.) to spruce budworm (Choristoneurafumiferana (Clem.)). Twenty-five mixed balsam fir–hardwood stands were selected in northern New Brunswick, with five stands in each 20% hardwood class (0–20, 21–40%, etc.). Defoliation each year from 1989 to 1993 was significantly (p < 0.0001) related to hardwood content, with r2 ranging from 0.57 to 0.81. As hardwood content increased, defoliation of balsam fir decreased. From 1989 to 1992, the years of moderate to severe defoliation, balsam fir stands with <40% hardwoods sustained 58–71% defoliation, on average, versus 12–15% defoliation in stands with >80% hardwood. A generalized model combining hardwood content and the estimated defoliation in pure softwood stands in a given year explained 77% of the variation in defoliation over stands and years. This study indicated that mixed balsam fir–hardwood stand management, with hardwood content >40%, could substantially reduce losses during spruce budworm outbreaks. Further research is warranted to elucidate the mechanism involved, but our working hypothesis is that greater hardwood content increased the diversity or populations of natural enemies such as birds and parasitoids.


2006 ◽  
Vol 36 (2) ◽  
pp. 324-336 ◽  
Author(s):  
Julia Koricheva ◽  
Harri Vehviläinen ◽  
Janne Riihimäki ◽  
Kai Ruohomäki ◽  
Pekka Kaitaniemi ◽  
...  

Pure forest stands are widely believed to be more prone to pest outbreaks and disease epidemics than mixed stands, leading to recommendations of using stand diversification as a means of controlling forest pests and pathogens. We review the existing evidence concerning the effects of stand tree-species diversity on pests and pathogens in forests of the boreal zone. Experimental data from published studies provide no overall support for the hypothesis that diversification of tree stands can prevent pest outbreaks and disease epidemics. Although beneficial effects of tree-species diversity on stand vulnerability are observed in some cases, in terms of reductions in damage, these effects are not consistent over time and space and seem to depend more on tree-species composition than on tree-species diversity per se. In addition, while mixed stands may reduce the densities of some specialized herbivores, they may be more attractive to generalist herbivores. Given that generalist mammalian herbivores cause considerable tree mortality during the early stages of stand establishment in boreal forests, the net effect of stand diversification on stand damage is unlikely to be positive.


The Auk ◽  
2007 ◽  
Vol 124 (4) ◽  
pp. 1149-1157
Author(s):  
J. Mark Hipfner ◽  
Mathieu R. Charette ◽  
Gwylim S. Blackburn

Abstract Large-scale oceanographic processes are the main drivers of seabird breeding success, but small-scale processes, though not as well understood, can also be important. We compared the success of Tufted Puffins (Fratercula cirrhata) breeding at two subcolonies only 1.5 km apart on Triangle Island, British Columbia, Canada, 2002–2005. In addition, we used stable-isotope analysis to test the hypothesis that parental foraging strategies differed between the two subcolonies, potentially underlying the variation in breeding success. Success was concordant across years at the two sites but, overall, Tufted Puffins bred more successfully at Strata Rock than at Puffin Rock. They raised chicks in all four years at Strata Rock, but in only three years at Puffin Rock; in two of those three years, Strata Rock chicks were, on average, 60 g and 100 g heavier than Puffin Rock chicks just before fledging. Discriminant analysis of carbon and nitrogen stable-isotope ratios in egg yolk and chick blood in 2004 and 2005 indicated that parental foraging differed between the two subcolonies, with both spatial (δ13C) and trophic-level (δ15N) differences involved. Thus, our study demonstrates the existence of foraging asymmetries in a pelagic seabird at a small spatial scale (between subcolonies), complementing patterns found at larger scales (between colonies). Moreover, the foraging asymmetries were associated with inequalities in fitness measures. We conclude that small-scale processes—in this case, systematic differences in the foraging ecology of local groups—can interact with large-scale oceanographic processes to determine seabird breeding success. Variation sous-coloniale du succès de reproduction de Fratercula cirrhata: Association avec l'écologie de la quête alimentaire et implications


NeoBiota ◽  
2021 ◽  
Vol 66 ◽  
pp. 75-94
Author(s):  
Sergey Golubkov ◽  
Alexei Tiunov ◽  
Mikhail Golubkov

The paucity of data on non-indigenous marine species is a particular challenge for understanding the ecology of invasions and prioritising conservation and research efforts in marine ecosystems. Marenzelleria spp. are amongst the most successful non-native benthic species in the Baltic Sea during recent decades. We used stable isotope analysis (SIA) to test the hypothesis that the dominance of polychaete worm Marenzelleria arctia in the zoobenthos of the Neva Estuary after its invasion in the late 2000s is related to the position of this species in the benthic food webs. The trend towards a gradual decrease in the biomass of Marenzelleria worms was observed during 2014–2020, probably due to significant negative relationships between the biomass of oligochaetes and polychaetes, both of which, according to SIA, primarily use allochthonous organic carbon for their production. The biomass of benthic crustaceans practically did not change and remained very low. The SIA showed that, in contrast to the native crustacean Monoporeia affinis, polychates are practically not consumed either by the main invertebrate predator Saduria entomon, which preys on M. affinis, oligochaetes and larvae of chironomids or by benthivorous fish that prefer native benthic crustaceans. A hypothetical model for the position and functional role of M. arctia in the bottom food web is presented and discussed. According the model, the invasion of M. arctia has created an offshoot food chain in the Estuary food webs. The former dominant food webs, associated with native crustaceans, are now poorly developed. The lack of top-down control obviously contributes to the significant development of the Marenzelleria food chain, which, unlike native food chains, does not provide energy transfer from autochthonous and allochthonous organic matter to the upper trophic levels. The study showed that an alien species, without displacing native species, can significantly change the structure of food webs, creating blind offshoots of the food chain.


Sign in / Sign up

Export Citation Format

Share Document