scholarly journals Evaluating ecological uniqueness over broad spatial extents using species distribution modelling

2021 ◽  
Author(s):  
Gabriel Dansereau ◽  
Pierre Legendre ◽  
Timothée Poisot

Aim: Local contributions to beta diversity (LCBD) can be used to identify sites with high ecological uniqueness and exceptional species composition within a region of interest. Yet, these indices are typically used on local or regional scales with relatively few sites, as they require information on complete community compositions difficult to acquire on larger scales. Here, we investigate how LCBD indices can be used to predict ecological uniqueness over broad spatial extents using species distribution modelling and citizen science data. Location: North America. Time period: 2000s. Major taxa studied: Parulidae. Methods: We used Bayesian additive regression trees (BARTs) to predict warbler species distributions in North America based on observations recorded in the eBird database. We then calculated LCBD indices for observed and predicted data and examined the site-wise difference using direct comparison, a spatial autocorrelation test, and generalized linear regression. We also investigated the relationship between LCBD values and species richness in different regions and at various spatial extents and the effect of the proportion of rare species on the relationship. Results: Our results showed that the relationship between richness and LCBD values varies according to the region and the spatial extent at which it is applied. It is also affected by the proportion of rare species in the community. Species distribution models provided highly correlated estimates with observed data, although spatially autocorrelated. Main conclusions: Sites identified as unique over broad spatial extents may vary according to the regional richness, total extent size, and the proportion of rare species. Species distribution modelling can be used to predict ecological uniqueness over broad spatial extents, which could help identify beta diversity hotspots and important targets for conservation purposes in unsampled locations.

2018 ◽  
Vol 373 (1761) ◽  
pp. 20170446 ◽  
Author(s):  
Scott Jarvie ◽  
Jens-Christian Svenning

Trophic rewilding, the (re)introduction of species to promote self-regulating biodiverse ecosystems, is a future-oriented approach to ecological restoration. In the twenty-first century and beyond, human-mediated climate change looms as a major threat to global biodiversity and ecosystem function. A critical aspect in planning trophic rewilding projects is the selection of suitable sites that match the needs of the focal species under both current and future climates. Species distribution models (SDMs) are currently the main tools to derive spatially explicit predictions of environmental suitability for species, but the extent of their adoption for trophic rewilding projects has been limited. Here, we provide an overview of applications of SDMs to trophic rewilding projects, outline methodological choices and issues, and provide a synthesis and outlook. We then predict the potential distribution of 17 large-bodied taxa proposed as trophic rewilding candidates and which represent different continents and habitats. We identified widespread climatic suitability for these species in the discussed (re)introduction regions under current climates. Climatic conditions generally remain suitable in the future, although some species will experience reduced suitability in parts of these regions. We conclude that climate change is not a major barrier to trophic rewilding as currently discussed in the literature.This article is part of the theme issue ‘Trophic rewilding: consequences for ecosystems under global change’.


2009 ◽  
Vol 21 (1) ◽  
pp. 39-49
Author(s):  
Karla Donato Fook ◽  
Silvana Amaral ◽  
Antônio Miguel Vieira Monteiro ◽  
Gilberto Câmara ◽  
Arimatéa de Carvalho Ximenes ◽  
...  

Currently, biodiversity conservation is one of the most urgent and important themes. Biodiversity researchers use species distribution models to make inferences about species occurrences and locations. These models are fundamental for fauna and flora preservation, as well as for decision making processes for urban and regional planning and development. Species distribution modelling tools use large biodiversity datasets which are globally distributed, can be in different computational platforms, and are hard to access and manipulate. The scientific community needs infrastructures in which biodiversity researchers can collaborate and share knowledge. In this context, we present a computational environment that supports the collaboration in species distribution modelling network on the Web. This environment is based on a modelling experiment catalogue and on a set of geoweb services, the Web Biodiversity Collaborative Modelling Services - WBCMS.


2018 ◽  
Author(s):  
Roozbeh Valavi ◽  
Jane Elith ◽  
José J. Lahoz-Monfort ◽  
Gurutzeta Guillera-Arroita

SummaryWhen applied to structured data, conventional random cross-validation techniques can lead to underestimation of prediction error, and may result in inappropriate model selection.We present the R package blockCV, a new toolbox for cross-validation of species distribution modelling.The package can generate spatially or environmentally separated folds. It includes tools to measure spatial autocorrelation ranges in candidate covariates, providing the user with insights into the spatial structure in these data. It also offers interactive graphical capabilities for creating spatial blocks and exploring data folds.Package blockCV enables modellers to more easily implement a range of evaluation approaches. It will help the modelling community learn more about the impacts of evaluation approaches on our understanding of predictive performance of species distribution models.


2011 ◽  
Vol 8 (3) ◽  
pp. 324-326 ◽  
Author(s):  
Luciana H. Y. Kamino ◽  
João Renato Stehmann ◽  
Silvana Amaral ◽  
Paulo De Marco ◽  
Thiago F. Rangel ◽  
...  

The workshop ‘ Species distribution models: applications, challenges and perspectives ’ held at Belo Horizonte (Brazil), 29–30 August 2011, aimed to review the state-of-the-art in species distribution modelling (SDM) in the neotropical realm. It brought together researchers in ecology, evolution, biogeography and conservation, with different backgrounds and research interests. The application of SDM in the megadiverse neotropics—where data on species occurrences are scarce—presents several challenges, involving acknowledging the limitations imposed by data quality, including surveys as an integral part of SDM studies, and designing the analyses in accordance with the question investigated. Specific solutions were discussed, and a code of good practice in SDM studies and related field surveys was drafted.


2019 ◽  
Author(s):  
Emy Guilbault ◽  
Ian Renner ◽  
Michael Mahony ◽  
Eric Beh

1AbstractSpecies distribution modelling, which allows users to predict the spatial distribution of species with the use of environmental covariates, has become increasingly popular, with many software platforms providing tools to fit species distribution models. However, the species observations used in species distribution models can have varying levels of quality and can have incomplete information, such as uncertain species identity.In this paper, we develop two algorithms to reclassify observations with unknown species identities which simultaneously predict different species distributions using spatial point processes. We compare the performance of the different algorithms using different initializations and parameters with models fitted using only the observations with known species identity through simulations.We show that performance varies with differences in correlation among species distributions, species abundance, and the proportion of observations with unknown species identities. Additionally, some of the methods developed here outperformed the models that didn’t use the misspecified data.These models represent an helpful and promising tool for opportunistic surveys where misidentification happens or for the distribution of species newly separated in their taxonomy.


Diversity ◽  
2020 ◽  
Vol 12 (10) ◽  
pp. 380
Author(s):  
Emiliano Mori ◽  
Mattia Brambilla ◽  
Fausto Ramazzotti ◽  
Leonardo Ancillotto ◽  
Giuseppe Mazza ◽  
...  

The genus Crocidura (Eulipotyphla, Soricidae) is the most speciose genus amongst mammals, i.e., it includes the highest number of species. Different species are distinguished by skull morphology, which often prevents the identification of individuals in the field and limits research on these species’ ecology and biology. We combined species distribution models and molecular analyses to assess the distribution of cryptic Crocidura shrews in Italy, confirming the occurrence of the greater white-toothed shrew Crocidura russula in the northwest of the country. The molecular identification ascertained the species’ presence in two distinct Italian regions. Accordingly, species distribution modelling highlighted the occurrence of areas suitable for C. russula in the westernmost part of northern Italy. Our results confirm the role of Italy as a mammal hotspot in the Mediterranean; additionally, they also show the need to include C. russula in Italian faunal checklists. To conclude, we highlight the usefulness of combining different approaches to explore the presence of cryptic species outside their known ranges. Since the similar, smaller C. suaveolens may be displaced by the larger C. russula through competitive exclusion, the latter might be the species actually present where C. suaveolens had been reported previously. A comprehensive and detailed survey is therefore required to assess the current distribution of these species.


2020 ◽  
Author(s):  
Willson Gaul ◽  
Dinara Sadykova ◽  
Hannah J. White ◽  
Lupe León-Sánchez ◽  
Paul Caplat ◽  
...  

ABSTRACTBiological records are often the data of choice for training predictive species distribution models (SDMs), but spatial sampling bias is pervasive in biological records data at multiple spatial scales and is thought to impair the performance of SDMs. We simulated presences and absences of virtual species as well as the process of recording these species to evaluate the effect on species distribution model prediction performance of 1) spatial bias in training data, 2) sample size (the average number of observations per species), and 3) the choice of species distribution modelling method. Our approach is novel in quantifying and applying real-world spatial sampling biases to simulated data. Spatial bias in training data decreased species distribution model prediction performance, but only when the bias was relatively strong. Sample size and the choice of modelling method were more important than spatial bias in determining the prediction performance of species distribution models.


Sommerfeltia ◽  
2018 ◽  
Vol 38 (1) ◽  
pp. 1-53 ◽  
Author(s):  
Bente Støa ◽  
Rune Halvorsen ◽  
Sabrina Mazzoni ◽  
Vladimir I. Gusarov

Abstract This paper provides a theoretical understanding of sampling bias in presence-only data in the context of species distribution modelling. This understanding forms the basis for two integrated frameworks, one for detecting sampling bias of different kinds in presence-only data (the bias assessment framework) and one for assessing potential effects of sampling bias on species distribution models (the bias effects framework). We exemplify the use of these frameworks to museum data for nine insect species in Norway, for which the distribution along the two main bioclimatic gradients (related to oceanicity and temperatures) are modelled using the MaxEnt method. Models of different complexity (achieved by use of two different model selection procedures that represent spatial prediction or ecological response modelling purposes, respectively) were generated with different types of background data (uninformed and background-target-group [BTG]). The bias assessment framework made use of comparisons between observed and theoretical frequency-of-presence (FoP) curves, obtained separately for each combination of species and bioclimatic predictor, to identify potential sampling bias. The bias effects framework made use of comparisons between modelled response curves (predicted relative FoP curves) and the corresponding observed FoP curves for each combination of species and predictor. The extent to which the observed FoP curves deviated from the expected, smooth and unimodal theoretical FoP curve, varied considerably among the nine insect species. Among-curve differences were, in most cases, interpreted as indications of sampling bias. Using BTG-type background data in many cases introduced strong sampling bias. The predicted relative FoP curves from MaxEnt were, in general, similar to the corresponding observed FoP curves. This indicates that the main structure of the data-sets were adequately summarised by the MaxEnt models (with the options and settings used), in turn suggesting that shortcomings of input data such as sampling bias or omission of important predictors may overshadow the effect of modelling method on the predictive performance of distribution models. The examples indicate that the two proposed frameworks are useful for identification of sampling bias in presence-only data and for choosing settings for distribution modelling options such as the method for extraction of background data points and determining the appropriate level of model complexity.


2012 ◽  
Vol 367 (1586) ◽  
pp. 247-258 ◽  
Author(s):  
Colin M. Beale ◽  
Jack J. Lennon

Motivated by the need to solve ecological problems (climate change, habitat fragmentation and biological invasions), there has been increasing interest in species distribution models (SDMs). Predictions from these models inform conservation policy, invasive species management and disease-control measures. However, predictions are subject to uncertainty, the degree and source of which is often unrecognized. Here, we review the SDM literature in the context of uncertainty, focusing on three main classes of SDM: niche-based models, demographic models and process-based models. We identify sources of uncertainty for each class and discuss how uncertainty can be minimized or included in the modelling process to give realistic measures of confidence around predictions. Because this has typically not been performed, we conclude that uncertainty in SDMs has often been underestimated and a false precision assigned to predictions of geographical distribution. We identify areas where development of new statistical tools will improve predictions from distribution models, notably the development of hierarchical models that link different types of distribution model and their attendant uncertainties across spatial scales. Finally, we discuss the need to develop more defensible methods for assessing predictive performance, quantifying model goodness-of-fit and for assessing the significance of model covariates.


Sign in / Sign up

Export Citation Format

Share Document