scholarly journals Analyzing the Tendencies in the Development of Centralized Heat Supply in Ukraine

2021 ◽  
Vol 8 (523) ◽  
pp. 68-81
Author(s):  
M. O. Kyzym ◽  
◽  
Y. I. Kotliarov ◽  
V. Y. Khaustova ◽  
◽  
...  

The article is aimed at defining the main tendencies in the development of centralized heat supply in Ukraine. Objective prerequisites for the use of centralized heating sources, as well as levels of development of heat supply systems of settlements are identified. It is determined that the development of heat supply systems largely depends on climatic conditions and the climatic characteristics of certain cities of Ukraine are considered. The main stages of construction of district heating systems in localities of Ukraine are formed. Types of heat supply of cities of Ukraine are identified. The genesis of development of heat generation and heat supply processes in Ukraine is researched. The peculiarities of formation of the national legislative framework for regulation of issues on production and consumption of heat energy are analyzed. The provisions of the Concept for the implementation of the State policy in the sphere of heat supply are analyzed. Based on the carried out analysis, it is determined the following: firstly, the imbalance of financial capabilities and needs for financing investment projects of heat supplying enterprises, as well as a shortage of investment resources, which requires careful substantiation of investment programs, directions and order of modernization and reconstruction of available capacities; secondly, shifting the focus to the powers of local authorities (through decentralization of public administration), which received broad powers to license and set tariffs for heat energy, but at the same time received a wider range of obligations to maintain heat supply systems in working condition; thirdly, the lack of medium- and long-term planning for the development of heat supply systems in localities, which largely explains the current state of the heat supply sector. It is substantiated that such features of the current state of heat supply in Ukraine require the development of new approaches to planning and implementation of works on organizational-technological modernization of heat supply in conditions of limited financial resources.

2016 ◽  
Vol 63 (5) ◽  
pp. 360-366 ◽  
Author(s):  
R. A. Sadykov ◽  
A. Z. Daminov ◽  
I. N. Solomin ◽  
V. A. Futin

2019 ◽  
Vol 41 (2) ◽  
pp. 78-87
Author(s):  
O. Pshinko ◽  
V. Habrinets

The possibility, conditions and scope of ensuring the effective operation of heat supply systems during the transition of a part of heat generating capacities to biofuel, taking into account the cost of its delivery, has been comprehensively studied. As biofuels, it is proposed to use waste from major agricultural crops that are grown in the Dnieper region


2020 ◽  
pp. 81-97
Author(s):  
O Shelimanova ◽  
◽  
A. Kolienko ◽  

Ensuring optimal hydraulic and thermal regimes in district heating systems (DHS) in the regulation of heat supply is an important factor in improving the energy and economic efficiency of DHS. In addition, high efficiency of the HS system is a factor that can ensure the preservation of its vital functions. Solving the problem of increasing the energy efficiency of the heat supply system is a complex problem that requires changes at all stages of heat transformation: in the energy source, heating networks and subscriber heating systems of heat consumers. The purpose of this study is to identify the impact of heat dissipation control processes in district heating systems on their energy and economic efficiency, provide recommendations for improving control processes taking into account modern challenges and regulatory requirements, analyze heat dissipation temperature schedules and select the optimal temperature schedule. It is shown that the optimal is the combined quantitative and qualitative regulation of heat release, which should be carried out both at the energy source and at consumers. The paper considers the possibility of using combined control systems in the existing district heating systems of Ukrainian cities. It is shown that the achievement of high energy efficiency is possible only with the introduction of automatic individual heating points with weather control and pressure drop regulators at the inlet to the buildings in the subscriber heating systems. Calculations of the amount of heat consumption reduction of centralized heat supply systems with the introduction of optimal control systems are performed.


2018 ◽  
Vol 39 ◽  
pp. 02001
Author(s):  
Ekaterina E. Mednikova

The choice of direction of heat supply systems development in cities is an important task for the authorities, district heating companies and consumers. The author focuses on two main problems in heat supply development questions: territory zoning by type of heat supply and determination of economically feasible heat supply systems sizes. For the solution of these problems, the mathematical model and algorithms were developed. For the solution of this task algorithms were developed.


2013 ◽  
Vol 2 (4) ◽  
pp. 100-119 ◽  
Author(s):  
V. A. Stennikov ◽  
O. V. Khamisov ◽  
A. V. Penkovsky

The paper is aimed at working out the mathematical models and methods to solve the problems of operation of developing heat supply systems in a competitive market environment. The formation of new principles of functioning in this field is conditioned by the market mechanisms emerging due to the interaction between different owners of heat economy facilities within the single system. Today heat energy markets are represented by a great number of enterprises with different types of ownership that operate heat energy sources and heat networks. It is obvious that such a situation explicitly causes conflicts of interests among the heat energy market participants and unbalances the responsibility for production reliability, heat energy supply efficiency and its quality among the participants of centralized heat supply (heat sources – heat networks - consumers). A reasonable solution to this problem can make it possible to determine optimal conditions for operation of the developing heat energy market, and their implementation can increase technical, economic and energy efficiency of heat energy. These problems are solved by using the methods of hydraulic circuit theory, nonlinear dynamic programming and two level programming. The studies performed allowed the creation of mathematical models and methods for optimal construction of efficient heat supply systems, organization of their operation that ensure the realization of full energy saving potential in the field of heat supply to consumers, taking into account the interests of all participants of the heat energy market.


Author(s):  
A.B. Alkhasov ◽  
◽  
V.A. Butuzov ◽  
R.M. Aliev ◽  
G.B. Badavov ◽  
...  

Дагестан в России занимает первое место по разведанным запасам геотермальных вод и второе после Камчатки по их добыче. На 13 разведанных месторождениях пробурено 141 геотермальная скважина, из которых 4 эксплуатируется с 48 скважинами. Отмечено, что в Дагестане пробурены самые глубокие геотермальные скважины – 5500 м с дебитами до 7000 м3/сутки, а максимальная добыча геотермальной воды была достигнута в 1988 г – 9,4 млн. м3 в год. Анализируются достижения дагестанской геотермальной научной школы. Преемником академической геотермии Дагестана в настоящее время является Институт проблем геотермии и возобновляемой энергетики ОИВТ РАН. Описаны производственные структуры по бурению и эксплуатации геотермальных месторождений. Наибольшие успехи геотермии в СССР связаны с деятельностью НПО «Союзбургеотермия» (г. Махачкала) и его шестью региональными управлениями. Максимальная добыча геотермальной воды в СССР была в 1988 г. – 60 млн. м3. Геотермальные ресурсы Дагестана определяются тремя основными структурно-гидрогеологическими этажами [4]: плиоценовым, миоценовым и мезозойским, изолированными друг от друга пластами глин. Анализ добычи геотермальной воды с 1966-2019 гг. (55 лет) показал, что с 1997 г он изменялся от 3500 до 4500 тыс. м3 в год. Приведены основные характеристики разведанных и эксплуатируемых месторождений Дагестана: Кизлярского, Тернаирского, Избербашского. Описаны структуры и способы разработки месторождений. Указано, что наиболее полную информацию содержат отчеты института «ВНИПИгеотерм». Анализируется опыт создания Дагестанской ГеоТЭС, геотермальных циркуляционных систем (ГЦС), совместно-раздельной добычи геотермальной воды разных геологических горизонтов. Приведен пример успешной реализации поверхностной системы геотермального теплоснабжения (СГТ) с гелиоустановкой на полигоне ИПГВЭ в Махачкале. Представлены данные об опыте предотвращения отложений солей и коррозии оборудования и трубопроводов, а также нейтрализации фенолов при сбросе отработанной геотермальной воды в поверхностные водоемы. Описана концепция создания в Дагестане СГТ, их основные характеристики. Представлены типовые схемы эксплуатируемых термораспределительных станций (ТРС) в Махачкале, Кизляре, Избербаше общей тепловой мощностью 35 МВт с годовым отпуском тепловой энергии 148 тыс. МВт·ч/год. Предложена перспективная схема геотермального теплоснабжения для условий Дагестана.


2018 ◽  
Vol 11 (2) ◽  
pp. 117-125
Author(s):  
M. E. Orlov ◽  
M. M. Zamaleev ◽  
A. V. Kuz’min ◽  
V. I. Sharapov

The possibilities of increasing the efficiency of cogeneration turbines of CHP plants through the use of low-potential heat carriers for water heating in district heat supply systems and increasing the generation of CHP electricity are considered. The existing technologies of heating the makeup water of the district heating system upstream water treatment apparatuses do not always provide the required heating temperature and do not have the sufficient energy efficiency. The technologies of using the main condensate of the exhaust steam in the turbine to heat the feed water in additional heaters included in the system of regeneration of cogeneration turbines are developed. The use of these technologies contributes to increasing the flow rate and reducing the enthalpy of the steam of regenerative outlets of the turbine used to heat this condensate, and, therefore, increases the combined heat and power generation. In order to determine the industrial applicability of the proposed solutions, experimental studies of the regeneration systems of turbo-units under the conditions of Ulyanovsk СHPPs-1 have been carried out. Multiparameter data arrays on operation of turbine condensate-feed path have been collected, and regression equations have been obtained to calculate the main condensate flow temperatures depending on various factors. On the basis of experimental data there have been calculated the minimum and maximum flow rates of feed water that can be heated to the desired temperature in the surface heaters included in the regeneration system of the turbines, the flow graphs of the heated feed water are constructed depending on the temperature of the main condensate after the turbines. The fields of application of the proposed technological solutions in operating heat supply systems are defined. The evaluation of energy efficiency is carried out using the method of specific generation of CHP electricity and conventional fuel economy at the implementation of the proposed solutions is calculated.


2018 ◽  
Vol 284 ◽  
pp. 1385-1389 ◽  
Author(s):  
Y.V. Yavorovsky ◽  
D.O. Romanov ◽  
V.G. Khromchenkov

This article is concerned with the research of thermos-hydraulic separators and dispatchers (THD) in heat supply systems and focuses on the experimental part of the research. Тhe experiments allowed to develop the ANSYS Fluent model in terms of accuracy and veracity. The developed model allows to predict operation of THD in different regimes. The results may be used for designing the systems with THD. Such systems may be low temperature district heating systems, where THD allow to hydraulically separate the circuits from each other.


2020 ◽  
Vol 209 ◽  
pp. 06020
Author(s):  
Andrey Penkovskii ◽  
Oleg Khamisov ◽  
Angelica Kravets

The article is devoted to the calculation of nodal prices for heat energy in heat supply systems. The problem, mathematical model and method of calculating nodal prices of heat energy for all consumers of the heat supply system considered, taking into account the different cost of heat production by sources, optimal flow distribution, and placement of consumers in the heat network (distance from the source). As the main computational tool for calculating nodal prices for heat energy, the Lagrange multiplier method used in the problem of modes optimizing in heat supply system, which allows explaining in detail the formation of the price for heat energy in each node. With the help of the proposed methodological support, practical research has been carried out for real heat supply system.


Sign in / Sign up

Export Citation Format

Share Document