Validation of Land Mobile Satellite Channel Model for GNSS Receiver Performance Assessment

Author(s):  
Juan M. Parro ◽  
Jose A. Garcia-Molina ◽  
Till Schmitt ◽  
Gustavo L�pez-Risue�o
2019 ◽  
Vol 9 (8) ◽  
pp. 1527 ◽  
Author(s):  
Mlynek ◽  
Misurec ◽  
Silhavy ◽  
Fujdiak ◽  
Slacik ◽  
...  

Building real Smart Metering and Smart Grid networks is very expensive and time-consuming and also it is impossible to install different technologies in the same environment only for comparison. Therefore, simulation and experimental pilot measurements are an easy, economical, and time-affordable solution for a first comparison and evaluation of different technologies and solutions. The local area networks (LAN) are the core of Smart Metering and Smart Grid networks. The two predominant technologies are mostly sufficient for LAN networks, Power Line Communication (PLC), and radio frequency (RF) solutions. For PLC it is hard to allow prediction of the behaviour. Performance assessment for point-to-point connection is easy, but for complex PLC networks with repeaters it is quite expensive. Therefore, a simulation is an easy, fast, and cheap solution for understanding the grid configuration, influence of particular topological components, and performance possibilities. Simulation results can, thus, provide material for the design of a telecommunication infrastructure for Smart Metering. This paper presents results of such a simulation study. It is based on realistic PLC channel model implementation in Network Simulator 3, our modification and extension of this implementation for our use case scenario. It uses Shannon’s formula to calculate theoretical maximum channel capacity. In particular, it provides channel capacity and achievable distances of broadband PLC (BB-PLC). In this article we also exploit our novel idea of simple performance assessment of broadband PLC communication via simulation. It is supposed to be used to understand, evaluate, and test the grid configuration before deployment.


2015 ◽  
Vol 2015 ◽  
pp. 1-15 ◽  
Author(s):  
Ali M. Al-Saegh ◽  
A. Sali ◽  
J. S. Mandeep ◽  
Alyani Ismail

Recent advances in satellite to land mobile terminal services and technologies, which utilize high frequencies with directional antennas, have made the design of an appropriate model for land mobile satellite (LMS) channels a necessity. This paper presents LMS channel model at Ku-band with features that enhance accuracy, comprehensiveness, and reliability. The effect of satellite tracking loss at different mobile terminal speeds is considered for directional mobile antenna systems, a reliable tropospheric scintillation model for an LMS scenario at tropical and temperate regions is presented, and finally a new quality indicator module for different modulation and coding schemes is included. The proposedextended LMS channel (ELMSC)model is designed based on actual experimental measurements and can be applied to narrow- and wide-band signals at different regions and at different speeds and multichannel states. The proposed model exhibits lower root mean square error (RMSE) and significant performance observation compared with the conventional model in terms of the signal fluctuations, fade depth, signal-to-noise ratio (SNR), and quality indicators accompanied for several transmission schemes.


Sensors ◽  
2019 ◽  
Vol 19 (13) ◽  
pp. 3018 ◽  
Author(s):  
Ville V. Lehtola ◽  
Stefan Söderholm ◽  
Michelle Koivisto ◽  
Leslie Montloin

GNSS receiver data crowdsourcing is of interest for multiple applications, e.g., weather monitoring. The bottleneck in this technology is the quality of the GNSS receivers. Therefore, we lay out in an introductory manner the steps to estimate the performance of an arbitrary GNSS receiver via the measurement errors related to its instrumentation. Specifically, we do not need to know the position of the receiver antenna, which allows also for the assessment of smartphone GNSS receivers having integrated antennas. Moreover, the method is independent of atmospheric errors so that no ionospheric or tropospheric correction services provided by base stations are needed. Error models for performance evaluation can be calculated from receiver RINEX (receiver independent exchange format)data using only ephemeris corrections. For the results, we present the quality of different receiver grades through parametrized error models that are likely to be helpful in stochastic modeling, e.g., for Kalman filters, and in assessing GNSS receiver qualities for crowdsourcing applications. Currently, the typical positioning precision for the latest smartphone receivers is around the decimeter level, while for a professional-grade receiver, it is within a few millimeters.


Sign in / Sign up

Export Citation Format

Share Document