GNSS Interference Signal Recognition Based on Deep Learning and Fusion Time-Frequency Features

2021 ◽  
Author(s):  
Chengjun Guo ◽  
Weijuan Tu
PLoS ONE ◽  
2017 ◽  
Vol 12 (9) ◽  
pp. e0182309 ◽  
Author(s):  
Ian McLoughlin ◽  
Haomin Zhang ◽  
Zhipeng Xie ◽  
Yan Song ◽  
Wei Xiao ◽  
...  

Geophysics ◽  
2021 ◽  
pp. 1-59
Author(s):  
yangyang Di ◽  
Enyuan Wang

The electromagnetic radiation (EMR) method is a promising geophysical method for monitoring and providing early warnings about coal rock burst disasters. In the underground mining process, personnel activities and electromechanical equipment produce EMR interference signals that affect the accuracy of EMR monitoring. Current methods for identifying the EMR interference signals mainly use their time and amplitude characteristics. However, these methods of EMR interference signal recognition and filtering need to be further improved. The advancements in the deep learning technique provide an opportunity to develop a new method for their identification and filtering. A method for EMR interference signal recognition based on deep learning algorithms is proposed. The proposed method uses bidirectional long short-term memory recurrent neural networks and Fourier transform to analyze numerous EMR interference signals along with other signals to intelligently identify and filter EMR signal sequences. The results showed that the proposed method can respond positively to EMR interferences and accurately eliminate EMR interference signals. This method can significantly improve the reliability of EMR monitoring data and effectively monitor rock burst disasters.


2021 ◽  
Vol 2021 ◽  
pp. 1-7
Author(s):  
Zhijun Guo ◽  
Shuai Liu

In the process of wireless image transmission, there are a large number of interference signals, but the traditional interference signal recognition system is limited by various modulation modes, it is difficult to accurately identify the target signal, and the reliability of the system needs to be further improved. In order to solve this problem, a wireless image transmission interference signal recognition system based on deep learning is designed in this paper. In the hardware part, STM32F107VT and SI4463 are used to form a wireless controller to control the execution of each instruction. In the software part, aiming at the time-domain characteristics of the interference signal, the feature vector of the interference signal is extracted. With the support of GAP-CNN model, the interference signal is recognized through the training and learning of feature vector. The experimental results show that the packet loss rate of the designed system is less than 0.5%, the recognition performance is good, and the reliability of the system is improved.


2021 ◽  
Vol 38 (5) ◽  
pp. 1541-1548
Author(s):  
Chang Liu ◽  
Ruslan Antypenko ◽  
Iryna Sushko ◽  
Oksana Zakharchenko ◽  
Ji Wang

Distributed radar is applied extensively in marine environment monitoring. In the early days, the radar signals are identified inefficiently by operators. It is promising to replace manual radar signal identification with machine learning technique. However, the existing deep learning neural networks for radar signal identification consume a long time, owing to autonomous learning. Besides, the training of such networks requires lots of reliable time-frequency features of radar signals. This paper mainly analyzes the identification and classification of marine distributed radar signals with an improved deep neural network. Firstly, the time frequency features were extracted from signals based on short-time Fourier transform (STFT) theory. Then, a target detection algorithm was proposed, which weighs and fuses the heterogenous marine distributed radar signals, and four methods were provided for weight calculation. After that, the frequency-domain priori model feature assistive training was introduced to train the traditional deep convolutional neural network (DCNN), producing a CNN with feature splicing operation. The features of time- and frequency-domain signals were combined, laying the basis for radar signal classification. Our model was proved effective through experiments.


2016 ◽  
Vol 27 (02) ◽  
pp. 1650039 ◽  
Author(s):  
Francesco Carlo Morabito ◽  
Maurizio Campolo ◽  
Nadia Mammone ◽  
Mario Versaci ◽  
Silvana Franceschetti ◽  
...  

A novel technique of quantitative EEG for differentiating patients with early-stage Creutzfeldt–Jakob disease (CJD) from other forms of rapidly progressive dementia (RPD) is proposed. The discrimination is based on the extraction of suitable features from the time-frequency representation of the EEG signals through continuous wavelet transform (CWT). An average measure of complexity of the EEG signal obtained by permutation entropy (PE) is also included. The dimensionality of the feature space is reduced through a multilayer processing system based on the recently emerged deep learning (DL) concept. The DL processor includes a stacked auto-encoder, trained by unsupervised learning techniques, and a classifier whose parameters are determined in a supervised way by associating the known category labels to the reduced vector of high-level features generated by the previous processing blocks. The supervised learning step is carried out by using either support vector machines (SVM) or multilayer neural networks (MLP-NN). A subset of EEG from patients suffering from Alzheimer’s Disease (AD) and healthy controls (HC) is considered for differentiating CJD patients. When fine-tuning the parameters of the global processing system by a supervised learning procedure, the proposed system is able to achieve an average accuracy of 89%, an average sensitivity of 92%, and an average specificity of 89% in differentiating CJD from RPD. Similar results are obtained for CJD versus AD and CJD versus HC.


Author(s):  
Shaoqiang Wang ◽  
Shudong Wang ◽  
Song Zhang ◽  
Yifan Wang

Abstract To automatically detect dynamic EEG signals to reduce the time cost of epilepsy diagnosis. In the signal recognition of electroencephalogram (EEG) of epilepsy, traditional machine learning and statistical methods require manual feature labeling engineering in order to show excellent results on a single data set. And the artificially selected features may carry a bias, and cannot guarantee the validity and expansibility in real-world data. In practical applications, deep learning methods can release people from feature engineering to a certain extent. As long as the focus is on the expansion of data quality and quantity, the algorithm model can learn automatically to get better improvements. In addition, the deep learning method can also extract many features that are difficult for humans to perceive, thereby making the algorithm more robust. Based on the design idea of ResNeXt deep neural network, this paper designs a Time-ResNeXt network structure suitable for time series EEG epilepsy detection to identify EEG signals. The accuracy rate of Time-ResNeXt in the detection of EEG epilepsy can reach 91.50%. The Time-ResNeXt network structure produces extremely advanced performance on the benchmark dataset (Berne-Barcelona dataset) and has great potential for improving clinical practice.


Sign in / Sign up

Export Citation Format

Share Document