scholarly journals Study on the Performance Characteristics of Sequencing Batch Membrane Bioreactor for Distributed Treatment of Domestic Wastewater

2018 ◽  
Vol 63 (1) ◽  
pp. 18-26 ◽  
Author(s):  
Gong Cheng ◽  
Amarendra Dhar Dwivedi ◽  
Jie Fu

A large amount of domestic wastewater is produced in our daily life. To sustainably use the urban domestic wastewater in the residential area and develop the equipment for distributed domestic wastewater treatment, the present work carried out a pilot study on the treatment of domestic wastewater by sequencing batch membrane bioreactor (SBMBR). Under the conditions of 20 L/h·m2 of average water flux, and 2 h/3 h of anaerobic/aerobic period, the SBMBR process showed a good treatment effect with a good quality of effluent (<50 mg/L of chemical oxygen demand (COD), <5 mg/L of ammonia nitrogen (NH3-N), <15 mg/L of total nitrogen (TN), <2.6 NTU of turbidity, 96.9% of color removal and 99.9% of bacteria removal). The aeration quantity had a certain degree of impact on the removal of COD and the optimum aeration rate was 13.9 m3/m3·h considering both the effectiveness and cost. When the SBMBR was continuously operated for 40 days, the transmembrane pressure reached 50 kPa and the membrane needed to clean. The hydrochloric acid (pH ≈ 2) was a suitable cleaning agent and the membrane was almost completely restored after cleaning.

2021 ◽  
Vol 894 (1) ◽  
pp. 012032
Author(s):  
A Magfhira ◽  
P Kinasih ◽  
D Salsabila ◽  
E Marchella ◽  
M F Fachrul

Abstract The purpose of writing this scientific paper is to analyze more deeply the management of the quality of the aquatic environment, especially regarding the treatment of domestic wastewater on a household scale. Domestic wastewater treatment with a constructed land system using Air Fern (Azolla pinnata) is expected to reduce concentration parameters such as BOD (Biochemical Oxygen Demand), COD (Chemical Oxygen Demand), and Ammonia. The growth rate of Air Fern (Azolla pinnata) after acclimatization is quite good so that it can reduce BOD (Biochemical Oxygen Demand), COD (Chemical Oxygen Demand) and Ammonia, which are a source of nutrients for plant growth so that it can be used as a promising material for plant growth. It can be used as a promising material for plant growth domestic wastewater treatment. The analysis was carried out using the blended concept, a combination of virtual, online, and laboratory/field activities (offline/outside the network) while still paying attention to health protocols. The priority of this literature study research is to provide input for the government in the form of alternative solutions for managing the quality of the aquatic environment, especially regarding domestic wastewater treatment on a household scale. In addition, this research also supports the international Sustainable Development Goals (SDGs) program: Goal 6: Access to Clean Water and Sanitation” in point 3, namely “Improving water quality by reducing pollution, eliminating waste disposal, and minimizing the disposal of chemicals and hazardous materials, halving the proportion of untreated wastewater and substantially increasing recycling and safe reuse globally”. This research can contribute to appropriate technology in environmental biotechnology, namely wastewater treatment with a system that has simple technology, low cost, energy-saving and is environmentally friendly, which can create a level of hygiene and comfort for the community and maintain environmental sustainability future.


2013 ◽  
Vol 448-453 ◽  
pp. 604-607 ◽  
Author(s):  
Hong Jie Sun ◽  
Xin Nan Deng ◽  
Rui Chen

Research was conducted on pilot-scale, two-stage batch-flow constructed wetland systems for domestic wastewater treatment. Synthetic domestic wastewater was treated in a pre-acidification reactor with a hydraulic retention time (HRT) of 3 hours and the average removal rate of chemical oxygen demand (COD) and ammonia-nitrogen (NH4-N) reached 30% and 13.6%, respectively. The first-stage constructed wetland operated with up-flow and batch feed and drain. One cycle was 12h, including 6h feed and 6h drain. With HRT of 3 days, the effluent COD concentrations fluctuated from 32.5 mg/L to 103.4 mg/L, removal rates varied from 60% to 88%; effluent NH4-N concentrations were in the range of 4.8 mg/L to 10.8 mg/L, removal rates varied from 50% to 70%. The second-stage constructed wetland operated with down-flow, which one cycle was 24h, including 12h feed and 12h drain. With HRT of 1 day, effluent COD concentrations varied from 15.7 mg/L to 48.7 mg/L, removal averaged 53.2%; effluent NH4-N concentrations ranged from 0 mg/L to 0.4 mg/L, average removal exceeded 99%. The spatial variation of COD and NH4-N in the first-stage constructed wetland demonstrated that entrainment of air during draining of constructed wetland could strengthen the removal of COD and NH4-N. Temperature had no significant effect on COD degradation while obviously affected the removal of NH4-N.


2017 ◽  
Vol 76 (7) ◽  
pp. 1796-1804 ◽  
Author(s):  
Konstantinos Azis ◽  
Charalampos Vardalachakis ◽  
Spyridon Ntougias ◽  
Paraschos Melidis

The aim of this study was to assess the efficacy and effluent quality of a pilot-scale intermittently aerated and fed, externally submerged membrane bioreactor (MBRes) treating municipal wastewater. The effluent quality of the MBRes was evaluated regarding system ability to comply with the Greek legislative limits for restricted and unrestricted wastewater reuse. The average permeate flux was 13.9 L m−2 h−1, while the transmembrane pressure remained above the level of −110 mbar. Experimental data showed that biochemical oxygen demand, chemical oxygen demand, total nitrogen, PO43−- P and total suspended solids removal efficiencies were 97.8, 93.1, 89.6, 93.2 and 100%, respectively, whereas turbidity was reduced by 94.1%. Total coliforms and Escherichia coli were fully eliminated by ultrafiltration and disinfection methods, such as chlorination and ultraviolet radiation. In agreement with the Greek legislation (Joint Ministerial Decree 145116/11) and the guidelines recommended for the Mediterranean countries, the disinfected effluent of the MBRes system can be safely reused directly for urban purposes.


2006 ◽  
Vol 53 (3) ◽  
pp. 69-78 ◽  
Author(s):  
C. Abegglen ◽  
H. Siegrist

A small-scale membrane plant for treating the domestic wastewater of a four-person household is presented. The membrane bioreactor has been in operation for 6 months and achieves elimination rates of 90, 95 and 80% for total organic carbon, chemical oxygen demand and total nitrogen, respectively. Only a small amount sludge is produced. The permeate is reused for flushing toilets and has a yellowish colour. After investigations of the effluent quality, decolourisation of the permeate, energy efficiency and control strategies in the first year, urine will be treated separately in an automated precipitation reactor where struvite is produced to improve the overall phosphate removal of the plant.


2019 ◽  
Vol 80 (1) ◽  
pp. 144-152 ◽  
Author(s):  
Yafei Sun ◽  
Junling Pang ◽  
Shiyao Wang ◽  
Tingting Tao ◽  
Xun Fu ◽  
...  

Abstract Nitrogen removal is an obstacle for the wide application of wastewater ecological soil infiltration (WESI) system in domestic wastewater treatment. In this study, matrix dissolved oxygen (DO), nitrogen removal and nitrous oxide (N2O) emission in aerated pilot WESI systems were investigated under different aeration times (1, 2, 3, 4 and 6 h/d) and aeration rates (1, 2, 3 and 4 L/min). The results showed that aerobic conditions in upper matrix and anoxic or anaerobic conditions in the subsequent matrix were developed in an aerated/non-aerated cycle at the optimal aeration condition of aeration time of 4 h/d and aeration rate of 3 L/min. Simultaneously, high removal efficiency of chemical oxygen demand (COD) (97.9%), NH4+-N (98.2%), total nitrogen (TN) (90.7%) and low N2O emission rate (13.2 mg/(m2 d)) were obtained. The results would provide optimal aeration parameters for application of intermittent aerated WESI systems.


2015 ◽  
Vol 72 (12) ◽  
pp. 2301-2307 ◽  
Author(s):  
Xiaodi Yue ◽  
Yoong Keat Kelvin Koh ◽  
How Yong Ng

In this study, a ceramic membrane with a pore size of 80 nm was incorporated into an anaerobic membrane bioreactor for excellent stability and integrity. Chemical oxygen demand (COD) removal efficiencies by biodegradation reached 78.6 ± 6.0% with mixed liquor suspended solids (MLSS) of 12.8 ± 1.2 g/L. Even though the total methane generated was 0.3 ± 0.03 L/g CODutilized, around 67.4% of it dissolved in permeate and was lost beyond collection. As a result, dissolved methane was 2.7 times of the theoretical saturating concentration calculated from Henry's law. When transmembrane pressure (TMP) of the ceramic membrane reached 30 kPa after 25.3 d, 95.2% of the total resistance was attributed to the cake layer, which made it the major contributor to membrane fouling. Compared to the mixed liquor, cake layer was rich in colloids and soluble products that could bind the solids to form a dense cake layer. The Methanosarcinaceae family preferred to attach to the ceramic membranes.


2013 ◽  
Vol 295-298 ◽  
pp. 755-758 ◽  
Author(s):  
Ya Yun Liu ◽  
Zhi Hong Li ◽  
Xiao Jian Liang ◽  
Yan Peng Lin ◽  
Rong Hao Wu ◽  
...  

Based on the water quality investigation data of December in 2010, the water environment quality of Lv-tang River in Zhanjiang national urban wetland park was assessed using single water quality parameter model and integrated water quality index model. The results show that the water quality of Lv-tang River is worse than the national quality standards for Grade V. The water is polluted seriously. The main pollutants are total nitrogen (TN), ammonia nitrogen (NH3-N) and chemical oxygen demand CODCr with their average concentrations of 60.49 mg/L, 30.57 mg/L and 227.38mg/L, respectively. The averages of their single parameter pollution index are 30.25 , 19.79 and 8.74. The average of single parameter pollution index of the river is 8.23 which indicated that the river belongs to heavy pollution zone. The integrated water quality index was 22.5 showing that the river belongs to serious pollution zone.


Author(s):  
Gilbert K. Gaboutloeloe ◽  
Gugu Molokwe ◽  
Benedict Kayombo

The impact of partially treated wastewater on the water quality of Notwane river stretch in the Gaborone region of Botswana was investigated. Water samples collected at effluent discharge point and three other sampling sites downstream were analyzed for pH, temperature, Biological Oxygen Demand (BOD5), Ammonia-nitrogen (Ammonia-N) and Nitrate-nitrogen (Nitrate-N). Sampling was conducted bi-weekly between February 2013 and April 2013. The ranges of measured parameters were:  pH (7.6-8.5), temperature (22-23ºC), BOD5 (11.2-27.0 mg/l), Ammonia-N (2.4-60.5 mg/l), Nitrate-N (20.6-28.6 mg/l). Analysis of variance, Games-Howel multiple comparisons and Pearson correlation were used to separate variable means. The results signal river non-point pollution due to runoff inflow of organics mainly from land use and domestic waste dumping by nearby dwellings. Temperature, BOD5, and pH range values were all within the Botswana Bureau of Standards (BOBS) limit while the maximum Ammonia-N and Nitrate-N were above BOBS limit by 50.5 mg/l and 6.6 mg/l, respectively. Regulations on indiscriminate waste dumping and discharge standards adherence should be enforced.


2018 ◽  
Vol 13 (3) ◽  
pp. 457-464
Author(s):  
PRIYANAND AGALE ◽  
PARAG SADGIR

Rural wastewater treatment is mostly ignored in developing and undeveloped countries. The most important barrier for addressing to this problem is cost of treatment and simplified technology. Aerobic Brickbat Grit Sand (ABGS) purifier consists of four stages. Wastewater flows gravitationally through partition walls in zigzag pattern with brick bats filter; Pebble sand filter and charcoal and grit filter which facilitate removal of contaminants from domestic wastewater. In the present study, experimental model for domestic wastewater treatment was setup in the Environmental Engineering laboratory at Government College of Engineering Aurangabad, Maharashtra. Physiochemical analysis was done in August and September of 2016 the percentage removal of contaminants results shows Biological Oxygen Demand (BOD) 92% - 87%, Chemical Oxygen Demand (COD) 93 - 89%, Total Suspended Solids( TSS) 80 - 78% and Turbidity 95 - 85%. The process is considered eco-friendly and easy to install technology for domestic wastewater treatment with use of locally available material. ABGS purifier is decentralized approach of domestic wastewater treatment. Hence ABGS as an alternative solution to tackle over the problem of rural wastewater treatment.


Sign in / Sign up

Export Citation Format

Share Document