scholarly journals Parametric and Comparative Study of a Flexible Retaining Wall

Author(s):  
Aissa Chogueur ◽  
Zadjaoui Abdeldjalil

This paper presents design of a self-stabilizing retaining diaphragm wall, using conventional analytical calculation method based on subgrade reaction coefficient and by numerical method with finite elements method FEM can lead to various uncertainties. Hence, engineers have to calibrate a computational strategy to minimize these uncertainties due to numerical modeling. For both two methods, this paper presents various simulations with the structure installed into the supported ground without surcharge. For the first method, the analysis has investigate the influence of main factors such as the wall rigidity, the different stages of excavation, the Young’s modulus, the cohesion and internal friction’s angle of the soil. For the FEM method, two constitutive soil models are used such as Mohr-Coulomb MC and hardening soil model HSM. In case of the last model HSM, the variation of required and additional factors for the model was investigated as well as secant modulus stiffness Eref50, unloading and reloading stiffness modulus Eur, power factor m and Over-consolidated ratio OCR. The results from of the various simulations carried out are confronted with other experimental and numerical results [4]. Avery good coherence results are showed.

2013 ◽  
Vol 12 (2) ◽  
pp. 961-980 ◽  
Author(s):  
Seong-Bae Jo ◽  
Jeong-Gon Ha ◽  
Mintaek Yoo ◽  
Yun Wook Choo ◽  
Dong-Soo Kim

2020 ◽  
Vol 2020 ◽  
pp. 1-14
Author(s):  
Kunpeng Xu ◽  
Liping Jing ◽  
Xinjun Cheng ◽  
Haian Liang ◽  
Jia Bin

Subgrade reaction coefficient is commonly considered as the primary challenge in simplified seismic design of underground structures. Carrying out test is the most reliable way to acquire this intrinsic soil property. Owing to the limitations of experimental cost, time consumption, soil deformation mode, size effect, and confined condition, the existing testing methods cannot satisfy the requirements of high-precision subgrade reaction coefficient in seismic design process of underground structures. Accordingly, the present study makes an attempt to provide new laboratory testing methods considering realistic seismic response of soil, based on shaking table test and quasistatic test. Conventional shaking table test for sandy free-field was performed, with the results indicating that the equivalent normal subgrade reaction coefficients derived from the experimental hysteretic curves are reasonable and verifying the deformation mode under seismic excitation. A novel multifunctional quasistatic pushover device was invented, which can simulate the most unfavorable deformation mode of soil during the earthquake. In addition, the first successful application of an innovative quasistatic testing method in evaluating subgrade reaction coefficient was reported. The findings of this study provide preliminary detailed insights into subgrade reaction coefficient evaluation which can benefit seismic design of underground structures.


2014 ◽  
Vol 484-485 ◽  
pp. 404-407 ◽  
Author(s):  
Qing Guo Ren ◽  
Guang Zhang ◽  
Xiao Guang Yue ◽  
Wen Cheng Liao

Deep soil horizontal displacement monitoring can measure the retaining wall board, row piles deformed shape, reflect the foundation on the vertical profile of horizontal displacement with depth changes in the law, predict foundation stability and security risks. Combined with Wuhan WANGJiaDun Pit Engineering, this article introduce CX-3C inclinometer work principle, put forward the calculated optimization measures of inclinometer, and analysis the main factors which should be considered to arrange the measuring points.


2012 ◽  
Vol 535-537 ◽  
pp. 2027-2031 ◽  
Author(s):  
Jian Chun Wu ◽  
Rong Shi

Using dynamic elastic-plastic finite element method, on the base of works together and interaction between loess and flexible retaining wall, 3-D nonlinear FEM (ADINA) is used to analyze and discussed the dynamic response of slope protected by soil nailing retaining wall under the EL-Centro and man-made Lanzhou accelerogram. A model that is capable of simulating the nonlinear static and dynamic elastic-plastic behavior of soil is used to model the soil, and a bilinear elastic-plastic model that has hardening behavior is used to model the soil nailing. Friction-element is employed to describe the soil-structure interaction behavior.The results show that the method is safe and credible. The results of the FEM dynamic analysis can be a useful reference for engineers of the design and construction of the soil nailed wall.


2018 ◽  
Vol 3 (1) ◽  
Author(s):  
Septiana Widi Astuti ◽  
Ayu Prativi

Abutment bridge is a building under the bridge located on both sides of the bridge end. The process of building a bridge abutment often requires excavation to the depth of the abutment base so that the abutment reinforcement and casting work can be carried out. In deep excavation work, each side of the excavation needs to be installed in a flexible retaining wall type (plaster) first. In this study, CCSP stability analysis was carried out on earth excavation work for abutment bridge BH 1751. The calculation method starts from determining the lateral earth pressure acting on the soil, then determining the depth of CCSP planting that is able to produce CCSP stability on the rolling force. The analysis shows that the depth of CCSP planting that meets the safety requirements of the rolling force is 20 m


2005 ◽  
Vol 45 (3) ◽  
pp. 51-70 ◽  
Author(s):  
YUSUKE HONJO ◽  
YULVI ZAIKA ◽  
GYANESWOR POKHAREL

Sign in / Sign up

Export Citation Format

Share Document