scholarly journals Surface Water–Groundwater Interactions and Bank Storage during Flooding: A Review

Author(s):  
Gadadhara Ferraz ◽  
Tamás Krámer

The interaction between river floods and groundwater not only replenishes groundwater resources, but also contributes to the attenuation of flood waves and is therefore a hydrologic factor in flood risk management. The magnitude of this interaction is expressed as bank storage, that is, the volume of the surface water that is temporarily stored in the riverbanks and slowly released back into the river after the peak of the flood wave. The amount of bank storage depends not only on the hydrograph of the river, but also on the morphology and hydrogeology of the river valley. This article offers a review of the current understanding and description of water exchange between the river and aquifer, with a focus on exchange due to flood events. The main field measurement methods of river-aquifer interactions, made to determine the properties of the aquifer, are summarized. The foundations of mathematical models are also reviewed, centered on how the surface and groundwater flow models are coupled, as well as on dimensional and process-related simplifications.

2021 ◽  
Vol 9 ◽  
Author(s):  
Behailu Birhanu ◽  
Seifu Kebede ◽  
Katrina Charles ◽  
Meron Taye ◽  
Ayele Atlaw ◽  
...  

Improving water security is critical to delivering the best outcomes for development. In Ethiopia, the upper Awash sub-basin supports expanding urban and industrial areas, with increasing water demands. Studies have preferentially focused either on surface water hydrology or on groundwater characterization. However, novel tools are required to support the conjunctive use of surface and groundwater for competing users under potential climate change impacts. In this paper, we present research based on a WEAP-MODFLOW link configured for four catchments in the upper Awash sub-basin (Akaki, Melka Kunture, Mojo, and Koka). The Akaki catchment supplies water for Addis Ababa city. Unlike most surface water hydrological models, both supply (surface water and groundwater) and demand (domestic, industrial, and livestock) are modeled. The tool was used to evaluate the impacts of population growth, leakage, expansion of surface and groundwater supply schemes, and climate change scenarios up to the year 2030. Considering the high population growth rate scenario for Addis Ababa city, the unmet domestic water demand may increase to 760 MCM in 2030. Water leakage through poor water supply distribution networks contributed about 23% of the unmet water demand. Though not significant compared with population and water loss stresses, climate change also affect the supply demand condition in the basin. Planning for more groundwater abstraction without considering additional surface water reservoir schemes will noticeably impact the groundwater resource, with groundwater levels projected to decline by more than 20 m. Even more groundwater level decline is observed In the Akaki catchment, where Addis Ababa city is located. Conjunctive use of surface and groundwater not only boosts the supply demand situation in the basin but will lift off some of the stresses from the groundwater resources. Even under the likely increase in temperature and low precipitation climate scenarios, the conjunctive use resulted in a significant increase in domestic water demand coverage from 26% for the reference condition to 90% in 2030, with minimum effect on the groundwater resources. To improve water security conditions through sustainable utilization of both surface and groundwater resources, policy responses need to consider surface and groundwater conjunctive use. Minimizing water leakage should also be given the highest priority.


2020 ◽  
Author(s):  
Hanz Gunter Unruh ◽  
Emad Hosny Habib ◽  
David Borrok

Abstract Background: Unconventional oil and gas reservoirs, frequently referred to as shale plays , have been gaining more attention in recent years. Hydraulic fracturing is performed to extract fossil fuels from unconventional reservoirs. Besides possible environmental implications, a better understanding of the potential stress that fracking may cause to water resources at the local or regional scale is still needed. The goal of this study is to assess the impact of current and projected future water demands for fracking on water resources in two main shale plays in Louisiana, USA. Methods: The analysis is performed in Louisiana’s two main shale plays, the Haynesville Shale and the Tuscaloosa Marine Shale, using the Water Supply Stress Index (WaSSI) framework. WaSSI is used to evaluate the stress at a fine watershed scale (HUC12) for annual-average conditions. The study analyzes different scenarios of historical and two future projected fracking conditions that simulate different extraction rates. In each fracking scenario, stresses on both surface and groundwater are evaluated separately. The study is based on a multitude of water supply and withdrawals datasets assembled and disaggregated to the watershed scale. Results: Under existing conditions, the impact of fracking water demands on surface water resources is within the low stress category in most watersheds in both shale plays. This impact remains low under more aggressive future fracking scenarios. In contrast, groundwater resources appear to be highly vulnerable under both the historical and projected fracking scenarios, especially in the Haynesville Shale where 20 out of the 94 watersheds become medium or highly stressed. If groundwater resources remained as a main source for fracking water, the number of stressed watersheds increased to 39 and 86 under the two projected future fracking scenarios. The least exploited Tuscaloosa Marine Shale remains mostly under low stress, except in the most aggressive future fracking scenario. Conclusions: Surface water resources in Louisiana’s shale plays seem abundant enough for fracking activities to rely on this source instead of groundwater whenever possible. Groundwater resources in Louisiana are clearly vulnerable to fracking activities, especially for the Haynesville shale play, under current and future projected fracking conditions.


Author(s):  
Z.B. Baktybaeva ◽  
R.A. Suleymanov ◽  
T.K. Valeev ◽  
N.R. Rakhmatullin

Carried out ecological and hygienic assessment of pollution of surface and groundwater of mining areas in the Republic of Bashkortostan. Revealed exceeding standards for fishery water bodies and drinking and cultural and community water use, which indicates the potential danger of surface water for the health of the region's population. The greatest relative contribution to the overall pollution of surface water bodies are making manganese (33,0–66,6 %), iron (9,1–15,6 %), calcium (6,5–11,7 %), lead (5,8– 7,2 %). The quality of water used for drinking purposes from decentralized water sources (boreholes, wells, springs), do not always correspond to the hygienic and sanitary-epidemiological requirements. In this case, the highest priority performance of drinking water contamination are increased stiffness, high content of iron, calcium, nitrate, presence cadmium, and hexavalent chromium.


2015 ◽  
Vol 51 (1) ◽  
pp. 198-212 ◽  
Author(s):  
Dylan J. Irvine ◽  
Roger H. Cranswick ◽  
Craig T. Simmons ◽  
Margaret A. Shanafield ◽  
Laura K. Lautz

1997 ◽  
Vol 11 (3) ◽  
pp. 253-267 ◽  
Author(s):  
JOHN A. MORRICE ◽  
H. MAURICE VALETT ◽  
CLIFFORD N. DAHM ◽  
MICHAEL E. CAMPANA

Sign in / Sign up

Export Citation Format

Share Document