scholarly journals Investigation of the Effect of Different Saturation Methods on the Undrained Shear Strength of a Clayey Soil Compacted with Standard and Modified Proctor Energies

2016 ◽  
pp. 323-329 ◽  
Author(s):  
Yuksel Yilmaz ◽  
◽  
Ahad Bahari Kheirjouy ◽  
Ali Payidar Akgungor ◽  
◽  
...  
2021 ◽  
Vol 44 (2) ◽  
pp. 1-9
Author(s):  
Mohammed Abdulnafaa ◽  
Muwafaq Awad ◽  
Ali Cabalar ◽  
Nurullah Akbulut ◽  
Burak Ozufacik

The study aims to investigate the effects of three different construction and demolition materials (CDMs), including crushed waste asphalt (CWA), crushed waste bricks (CWB), and crushed waste concrete (CWC), on some geotechnical properties of low plastic clayey soil, particularly, the undrained shear strength (Su) and the hydraulic conductivity (k). A set of experimental tests were performed on clayey soil and on clayey soil-CDM mixtures at mixing ratios of 5%, 10%, 15%, and 20% by dry weight. The results show that the soil plasticity decreases as the CDMs increase. Quantitatively, it is found a maximum of 12%, 6%, and 6% decrease in the liquid limits (LL) and a maximum of 9%, 4%, and 6% decrease in the plasticity limit (PI) of the mixtures with 20% of CWA, CWB, and CWC, respectively. The results of the Su estimated empirically from the fall cone tests show that the Su decreases as the CDMs increase. The Su reduces by approximately 10% and 2% of the mixtures with 20% CWA and CWB, respectively. But the Su is not affected by the CWC additive for water content lower than approximately 35%. The k value increases as the CDMs increase. The results show that the reported k value increases by 75%, 79%, and 247% of the mixtures with 20% of CWA, CWB, and CWC, respectively. Additionally, the k values obtained from the consolidation test confirm the findings of the effect of the CDMs on the coefficient of hydraulic conductivity.


2018 ◽  
Vol 162 ◽  
pp. 01002 ◽  
Author(s):  
Hussein Karim ◽  
Kawther Al-Soudany

This study illustrates the application of polymer material for clayey soil stabilization. The article will focus on studying the strength behavior of the clayey soils reinforced with homogenously polymer fiber. In the current research, “polypropylene” was selected as polymer material to reinforce the natural clay soil. This polymer fiber was added to the clayey soil with four different percentages of (0, 1.5, 3, and 5%) by weight of soil. Various tests with different polymer contents were performed to study the effect of using such a polymer as a stabilizing agent on geotechnical properties of clay. As the fiber content increases, the optimum moisture content (OMC) is increased while the specific gravity decreases. For Atterberg’s limits, the results indicated increasing liquid limit and plasticity index while decreasing plastic limit with increase in polymer content. The outcomes of the tests also reflected a considerable improvement in the unconfined compressive strength with noticeable improvement in the shear strength parameter (undrained shear strength, cu) of the treated soils. The undrained shear strength obtained from treated soil with 5% polymer addition is more than three times that of the untreated soil. With an increase in polymer content, the consolidation parameters (Compression index Cc and recompression index Cr) decreases. Finally, the benefit of the reinforcement is increased with increasing polymer fiber content.


Author(s):  
Joanna Stróżyk ◽  
Matylda Tankiewicz

Abstract Undrained shear strength of the heavily consolidated clay. The undrained shear strength (cu) is considered one of the most basic parameter characterizing soils in engineering practice. The particular importance of cu is in the case of clayey soil. This parameter also is the basis for the classification of soil according to the ISO standard. The undrained shear strength usually is determined from unconfined compression test or from triaxial compression test. In the simple way it can be estimated from the fall cone penetrometer test as index parameter. In the presented work the results of unconfined compression tests for very stiff, heavily consolidated clay were shown. All analysed clay specimens were taken from the large depth, up to 303 m below terrain level. The tests results: undrained shear strength (cu) and unconfined compression strength (qu) were discussed in the relation on in situ consolidation stress, Atterberg’s limits and the indicatory test - fall cone test results


2017 ◽  
Vol 62 (2) ◽  
pp. 367-384
Author(s):  
Sebastian Olesiak

Abstract Soil strength parameters needed for the calculation of bearing capacity and stability are increasingly determined from field testing. This paper presents a method to determine the undrained shear strength cuWST of the soil, based on the Weight Sounding Test (WST). The innovative solution which allows for a significant reduction of equipment needed for geotechnical field investigation is presented. The proposed method is based on an additional measurement of the torque during testing. It then becomes possible to estimate the undrained shear strength, cuWST of the soil, using the correlation given in this paper. The research results presented in this paper were carried out on selected cohesive soils, Miocene clays from the Carpathian Foredeep.


Sign in / Sign up

Export Citation Format

Share Document