scholarly journals A Review of Direct Shear Testing Configurations for Bond between Fiber-Reinforced Polymer Sheets on Concrete and Masonry Substrates

Author(s):  
Behnam Shadravan ◽  
Fariborz M. Tehrani

The surface bond characteristics of Fiber-Reinforced Polymer (FRP) sheets have been subject to research for more than two decades. These sheets generally exhibit brittle performance during direct shear and often delaminate prematurely before they attain the full strength of the material. This paper reviews the experimental testing configurations to investigate the direct shear bond surface characteristics of FRP sheets on concrete and masonry substrates. Additionally, it summarizes the data acquisition methods and the observed behavior for surface bond of FRP sheets on concrete and masonry. This review aims to serve as a source for future experimental research studies in the field. Further, an innovative testing configuration is suggested to measure bond strength of FRP sheets on concrete and masonry surfaces in direct shear.

2017 ◽  
Vol 8 (2) ◽  
pp. 304-320 ◽  
Author(s):  
Mohamed MA Abdel-Kader ◽  
Ahmed Fouda

In this article, the response of 12 plain concrete specimens to an impact of hard projectiles was examined in an experimental study. The tests were planned with an aim to observe the influence of using glass fiber reinforced polymer sheets to strengthen plain concrete panels on the performance of concrete under this type of loading. The main findings show that strengthening plain concrete panels with glass fiber reinforced polymer sheets showed satisfactory performance under the impact load; the glass fiber reinforced polymer sheets can be used for strengthening or upgrading concrete structures to improve their resistance against impact. Also, the location of the glass fiber reinforced polymer sheet affects the front and rear face craters.


2010 ◽  
Vol 168-170 ◽  
pp. 549-552
Author(s):  
Yan Lei Wang ◽  
Qing Duo Hao ◽  
Jin Ping Ou

A new form of fiber reinforced polymer (FRP)-concrete composite beam is proposed in this study. The proposed composite beam consists of a GFRP box beam combined with a thin layer of concrete in the compression zone. The interaction between the GFRP beam and the concrete was obtained by bonding coarse-sand on the top flange of the GFRP beam. One GFRP box beam and one GFRP-concrete composite beam were investigated in four-point bending test. Load-deflection response, mid-span longitudinal strain distributions and interface slip between GFRP beam and the concrete for the proposed composite beam were studied. Following conclusions are drawn from this study: (1) the stiffness and strength of the composite beam has been significantly increased, and the cost-to-stiffness ratio of the composite beam has been drastically reduced comparing with GFRP-only box beam; (2) a good composite action has been achieved between the GFRP beam and the concrete; (3) crushing of concrete in compression defines flexural collapse of the proposed composite beam..


2017 ◽  
Vol 52 (15) ◽  
pp. 2103-2114 ◽  
Author(s):  
Mahdie Mohammadi ◽  
Majid Barghian ◽  
Davood Mostofinejad ◽  
Adel Rafieyan

The effects of such environmental conditions as alkali media at temperatures of 23℃, 40℃, and 60℃ were investigated on the fiber reinforced polymer-to-concrete bond strength. For this purpose, 42 specimens were strengthened via the externally bonded reinforcement and the externally bonded reinforcement on grooves techniques. The specimens were later subjected to the single-shear test after the specified durations of exposure to an alkaline medium. The particle image velocimetry technique was used to investigate such bond characteristics of the strengthened specimens as load-slip behavior, strain profiles, and strain fields along the fiber reinforced polymer-to-concrete bond. Experimental results showed that the specimens strengthened via the externally bonded reinforcement on grooves method exhibited ultimate bond loads by up to 50% higher than those strengthened via the externally bonded reinforcement method.


Sign in / Sign up

Export Citation Format

Share Document