scholarly journals Hybrid Power Plant with Storage System: University Research Station

2019 ◽  
Vol 64 (1) ◽  
pp. 47-52 ◽  
Author(s):  
Adam Gubański ◽  
Artur Sobkowiak ◽  
Michał Jasiński ◽  
Dominika Kaczorowska ◽  
Przemysław Janik ◽  
...  

The article presents a brief overview of renewable energy sources, microgrids and energy storage problems. The construction and utilisation of university research station to study the operation of a hybrid power plant with an energy storage unit has been described. The tested hybrid power plant consists of a photovoltaic panel and a wind turbine. There are two possible areas of research, one is when the microgrid is connected to the main grid and second when it functions independently as a stand-alone setup. In addition, the model allows to study the characteristics of photovoltaic cells, examine the dependence of generated power on the time, season and angle of the solar panel. In this article, the current-voltage characteristics and influence of solar azimuth angle on cell power, dependence of wind on power generated by the wind turbine, and study of off-grid work of power plant are presented.

Electronics ◽  
2021 ◽  
Vol 10 (7) ◽  
pp. 796
Author(s):  
Susana Martín-Arroyo ◽  
José Antonio Cebollero ◽  
Miguel García-Gracia ◽  
Álvaro Llamazares

Stand-alone hybrid power plants based on renewable energy sources are becoming a more and more interesting alternative. However, their management is a complex task because there are many variables, requirements and restrictions as well as a wide variety of possible scenarios. Though a proper sizing of the power plant is necessary to obtain a competitive cost of the energy, smart management is key to guarantee the power supply at a minimum cost. In this work, a novel hybrid power plant control strategy is designed, implemented and simulated under a wide variety of scenarios. Thereby, the proposed control algorithm aims to achieve maximum integration of renewable energy, reducing the usage of non-renewable generators as much as possible and guaranteeing the stability of the microgrid. Different scenarios and case studies have been analyzed by dynamic simulation to verify the proper operation of the power plant controller. The main novelties of this work are: (i) the stand-alone hybrid power plant management regarding a battery energy storage system as a part of the spinning reserve, (ii) the characterization of the largest loads as non-priority loads, (iii) the minimization of the needed spinning reserve and fuel consumption from diesel generators.


2021 ◽  
Vol 11 (18) ◽  
pp. 8484
Author(s):  
Seok-Ho Song ◽  
Jin-Young Heo ◽  
Jeong-Ik Lee

A nuclear power plant is one of the power sources that shares a large portion of base-load. However, as the proportion of renewable energy increases, nuclear power plants will be required to generate power more flexibly due to the intermittency of the renewable energy sources. This paper reviews a layout thermally integrating the liquid air energy storage system with a nuclear power plant. To evaluate the performance realistically while optimizing the layout, operating nuclear power plant conditions are used. After revisiting the analysis, the optimized performance of the proposed system is predicted to achieve 59.96% of the round-trip efficiency. However, it is further shown that external environmental conditions could deteriorate the performance. For the design of liquid air energy storage-nuclear power plant integrated systems, both the steam properties of the linked plants and external factors should be considered.


Author(s):  
Shahin Shafiee ◽  
Mary Helen McCay

Airports, one of the important transportation components in this modern age, are under continuous improvement especially in regard to energy sustainability. While most work is concentrated on large airports, smaller airports which are mostly scattered around rural areas seem to be better opportunities for renewable energy utilization. However, while renewable energy has come into use at airports over the past decade, it has been at a slow pace and has not included storage. A reliable storage system can significantly increase the power reliability of a small airport and make a renewable energy system viable. Acquiring the technical requirements of a facility based on its characteristics enables the designer to evaluate the power source options and develop an efficient storage system. The current paper analytically develops a framework to design and integrate an energy storage method for a renewable system into a small airport facility. The framework details include methods for energy storage which are environmentally acceptable in combination with renewable energy sources to produce electrical power for the on-site facilities. The technical analysis which leads to the sizing of the storage unit initiates with categorizing different methods for energy storage and their applicability to an airport facility for off-grid and on-grid modes. Based on the results and conclusions from the first step, the search is narrowed down to mediums for electricity storage for a wind farm or solar power plant. In such a case, the main applications of the storage unit could be either to supply power to the facility during the transition time from the renewable source to the main grid or to regulate the power frequency of the generation unit. Capacitors and batteries were selected as the two options for the given power requirement of the facility. Considering the wide variety of available technologies and lower costs, the appropriate storage system is proposed for both long term and short term applications. A table is presented to compare available battery technologies and their respective storage capacities.


2018 ◽  
Vol 228 ◽  
pp. 33-41 ◽  
Author(s):  
Stefano Barsali ◽  
Alessio Ciambellotti ◽  
Romano Giglioli ◽  
Fabrizio Paganucci ◽  
Gianluca Pasini

An increase in the share of renewable energy sources characterized by intermittent generation leads to a decrease in the quality of electricity and the need to balance the load on the network. The methods used today for balancing the load on the generation side, as well as the use of energy storage technology, do not always provide an effective solution to the balancing problem. This is especially evident when traditional generators are transferred from the base load electricity sources to the reserve ones. The main issue is the increased electric energy losses due to the low efficiency of the power storage technology. Using the most advanced hybrid power plant Gorona del Viento (El Hierro island, Canary archipelago, Spain), which includes traditional and renewable energy sources, as reference, we are describing the methods of balancing the load on the network, which includes balancing, both the electricity generation and consumption. Using the calculation models of the hybrid power plant operating modes, the possibility of implementing various load balancing strategies on the consumption side has been demonstrated, their features have been analyzed, their effectiveness in reducing energy losses has been demonstrated.


Author(s):  
Mychael Gatriser Pae ◽  
Tegar Prasetyo ◽  
Suharyanto Suharyanto ◽  
T. Haryono ◽  
Ridwan Budi Prasetyo

The reliability of stand-alone and hybrid power plant systems was dependent on electrical loads that the system must supply. For example, on renewable energy sources (RES), Reviews of those systems needs to be calculated well before the development process. One of the most important processes in the initial calculation is the electrical load that must be supplied by the system. The electrical load has a major influence on the amount of power generating capacity. A power plant that has higher electricity production than the load to be fulfilled was considered capable of meeting the system electrical load requirements. However, in terms of the reliability, it is considered as a loss because it will affect the life of the components and the high cost of operating from the system. Therefore, this research discusses the effect of load growth on hybrid power plant system performance of Baron Techno Park. The result of the research shows that the total electricity production of Baron Techno Park hybrid power plant system is 319.695 kWh/year with Net Present Cost (NPC) is $560.077 and the cost of energy (COE) is $0.64/kWh. Total electricity consumption of the PLTH Baron Techno Park is 67.413 kWh/year with total excess electrical energy is 245,547 kWh/year. Load growth of 5%, 10%, 15%, and 20% of the total current load affect the consumption of electric energy, excess electrical energy, and COE. The higher the load growth will affect the total electricity consumption that is increasingly higher so that the total excess electrical energy is lower. This research found that the performance of the system is not influenced by load growth. The highest performance of the system is resulted by the wind turbine of 72.62%, followed by solar panels of 18.82%, and biodiesel of 8.56%.


Sign in / Sign up

Export Citation Format

Share Document