scholarly journals Optimal Pressure Measurement Layout Design in Water Distribution Network Systems

2017 ◽  
Vol 62 (1) ◽  
pp. 51 ◽  
Author(s):  
Kálmán Klapcsik ◽  
Roxána Varga ◽  
Csaba Hős

This paper addresses the problem of locating the optimal pressure measurement points in a hydraulic system to help system management, calibration/validation of hydraulic models and measurement planning. Two approaches are discussed in the present work. The first method splits the hydraulic system by means of community concept borrowed from graph theory and uses merely the topology of the network. The resulting subsystems will have minimum number of external and maximum number of internal connections and leaves the choice of locating the single pressure measurement location per subsystem to a higher-level decision. The second technique is based on the sensitivity analysis of the hydraulic network and places the measurement points at the most sensitive locations, while trying to preserve the spatial diversity of the layout, i.e. preventing the accumulation of the measurement points within a small area of high sensitivity. The performance of both techniques is demonstrated on real-size hydraulic networks. The proposed sampling layouts are compared to classic D-optimality, A-optimality and V-optimality criterion.

2009 ◽  
Vol 62-64 ◽  
pp. 797-801 ◽  
Author(s):  
O.C. Izinyon ◽  
B.U. Anyata

A WaterCAD hydraulic network model of the existing Ikpoba Hill Benin City water distribution system was constructed and calibrated for steady state simulation studies using the network’s physical, operational and calibration data. The model was then used for available fire flow analysis and system improvement design. Our study reveals that the existing network has available fire flow of O l/s and hence cannot provide needed flow for fire suppression. However, the proposed improved network with increased diameters of existing pipes and which also takes into account expected future growth has available fire flow of between 29.6l/s and 40l/s at the nodes in the network.On the basis of available fire flow at the nodes in the system, hydrant tagging, numbering and colour coding which can effectively increase the fire fighting ability of the fire department can be undertaken.


1990 ◽  
Vol 17 (4) ◽  
pp. 547-557
Author(s):  
U. S. Panu

Computer models are no longer viewed as exotic luxuries, rather they are being increasingly accepted as necessities for effective planning and operation of water distribution systems. In large networks, pressure-reducing valves (PRVs) are common water appurtenances. However, through the use of the Hazen–Williams friction factor, there are difficulties in representing PRVs in network-analysis models. This paper focuses on these difficulties and suggests a procedure for resolving them through the use of modified Hazen–Williams friction factor. The effectiveness of the proposed modification in representing PRVs in the WATER model is demonstrated. Key words: network analysis, numerical modeling, hydraulics, municipal, water distribution, PRV representation, friction coefficient, Hazen–Williams, flow rate, simulations.


Agronomy ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 2313
Author(s):  
Martín Calero-Lara ◽  
Rafael López-Luque ◽  
Francisco José Casares

In this study, an algorithm has been developed that manages photovoltaic solar energy in such a manner that all generated power is delivered to the system formed by a pump and irrigation network with compensated emitters. The algorithm is based on the daily work matrix that is updated daily by considering water and energy balances. The algorithm determines an irrigation priority for the sectors of irrigation of the farm based on programmed irrigation time and water deficits in the soil and synchronises the energy produced with the energy requirement of the hydraulic system according to the priority set for each day, obtaining the combinations of irrigation sectors appropriate to the photovoltaic power available. It takes into account the increment/decrease in the pressure of the water distribution network in response to increases/decreases in photovoltaic energy by increasing/decreasing the rotational speed of the pump, thus increasing/decreasing the power transferred to the system. The application to a real case of a 10-hectare farm divided into four sectors implies an efficient use of the energy of 26.15% per year and savings in CO2 emissions of 6.29 tonnes per year.


2020 ◽  
Vol 18 (5) ◽  
pp. 704-721
Author(s):  
Hamideh Jafari ◽  
Taher Rajaee ◽  
Sara Nazif

Abstract One of the ways to reduce the risk of contaminated water consumption is to optimally locate the quality sensors. These sensors warn users in the case of contamination detection. Analyzing the actual conditions of the contamination which enters the network is faced with many uncertainties. These uncertainties include the dose of contamination, time and location of its entry which have received less attention. Also, the uncertainty in the nodes' water demand causes changes in the distribution and contamination diffusion within the network. The main impetus of the present study is to determine the optimal quality sensor locations in the water distribution network in order to reduce the damage caused by contaminated water consumption prior to the contamination event detection. For this purpose, a parameter is defined as the maximum possible damage for calculating which the vulnerability and importance of the nodes have been considered in addition to the uncertainties in the location and time of the contamination entry. The importance of each node differs from that of other ones. Ranking the importance of the nodes is influenced by both land use and covered population ratio. In this study, six scenarios are defined for the contamination event in the water distribution network. These scenarios consider the effects of varying pollutant dose and the contamination input from nodes which are prone to its entry. Also, the NSGA-II has been utilized in order to minimize the damage with minimum number of sensors. The proposed model is evaluated on a real network in Iran. The results indicate that adding only one or two contamination warning sensors to the proposed locations can lead to the decreasing damage caused by the contaminated water consumption from 54 to 82%. According to the proposed method, the best answer for scenarios 1–6 was obtained for 7, 6, 6, 2, 2 and 2 sensors, respectively. The results showed that the slope of the pollution rate diagram does not change much from 6 sensors upwards in the first three scenarios, and from 4 sensors upwards in the second three scenarios. In scenarios 1–3, with 7, 6 and 6 sensors, respectively, in different nodes, the best placement is for 203–224 equivalent attack population, and in scenarios 4–6, with sensors in nodes 4 and 43, the best placement is for 225–279 equivalent attack population.


10.29007/425l ◽  
2018 ◽  
Author(s):  
Fernando Silva ◽  
Thaisa Dias Goulart ◽  
Regina Mambeli Barros

The calibration of models applied to water distribution network systems is fundamental, as this improves the computational algorithms constructed from mathematical models. In this work from a hypothetical network, three proposed calibration algorithms were tested, (a) in terms of roughness of the model; (b) in terms of roughness and random demand and (c) in terms of random roughness and pressure directed demand. The results show few differences for the three algorithms tested, the first and third results are almost identical and slightly different from the second. However, these are basis for application in real networks, where surely the more complex algorithms can produce advantages.


Sign in / Sign up

Export Citation Format

Share Document