scholarly journals Unconventional Intersection Designs for Improving Traffic Operation Along Arterial Roads

Author(s):  
Taqwa Hadidi ◽  
Hana Naghawi ◽  
Khair Jadaan

The main objective of this paper is to evaluate the effect of implementing four Unconventional Arterial Intersection Designs (UAIDs) including median U-Turn, Superstreet, Jughandle and Single Quadrant Intersection on a major arterial road using SYNCHRO microscopic simulation software. For this purpose, Wadi Saqra Signalized Intersection on Shaker Bin Zaid major arterial road in Amman, Jordan was selected. The simulation results showed that only the Jughandle improved the intersection Level of Service (LOS) slightly, F–E. Nevertheless, the intersection delay was significantly reduced by 64.81%, 76.6%, 91.28% and 75.60% on the proposed Median U-Turn, Superstreet, Jughandle and Single Quadrant unconventional intersection design, respectively. This indicated that these UAIDs don't perform well under heavy traffic volumes. Also, since the Jughandle was the only UAID which improved the LOS on the main intersection, the operational performance of Prince Shaker Bin Zaid arterial after implementing the Jughandle at the main intersection was evaluated including the main intersection: Wadi Saqra intersection, one prior to the main intersection and one after the main intersection. It was found that the use of the Jughandle increased the average travel speed by 35% and decreased the average stopped delay by 28.68% on the arterial road. Also, this paper evaluated the current transportation system and road user's attitude towards UAIDs' implementation through a questionnaire survey. The results indicated high acceptance of UAIDs. Finally, the construction cost for each UAID type was estimated. It was found that the Jughandle had the highest construction cost due to its high acquisition cost.

Author(s):  
Ma’en Mohammad Ali Al-Omari ◽  
Mohamed Abdel-Aty

Several unconventional designs have been suggested to enhance traffic operation and safety at intersections. However, the operational benefits of implementing some of them are achieved only under certain traffic conditions. For instance, the operational performance of the restricted crossing U-turn (RCUT) intersection design manifests only under highly unbalanced traffic conditions. The RCUT intersection outperforms conventional intersections that are subjected to high major traffic and light minor traffic volumes, while its operational performance fades at intersections with moderate to heavy minor road traffic. In this technical paper, a new innovative four-leg intersection design has been proposed to replace the RCUT intersection under moderate and heavy minor road traffic volumes. The new intersection design which has been named the “Shifting Movements” (SM) intersection has a low number of conflict-points compared with conventional intersections, but similar to the RCUT intersection. Therefore, similar safety benefits are expected to be achieved by the implementation of the SM intersection. Operational evaluations and comparisons between conventional, RCUT, and SM intersections have been conducted in the microscopic simulation environment. Different traffic volume levels and left-turn proportions have been assumed to represent the peak hour with moderate to high left-turn traffic. The results indicate that the SM intersection design significantly outperforms conventional and RCUT intersections that are subjected to high traffic volumes in average control delay and throughput.


2018 ◽  
Vol 46 (3) ◽  
pp. 122-128 ◽  
Author(s):  
Hana Naghawi ◽  
Alaa AlSoud ◽  
Taqwa AlHadidi

This paper provides policy makers with an objective assessment on the possibility for implementing an unconventional arterial intersection design, the Superstreet, for improving safety and operational characteristics for an existing signalized intersection. The signalized intersection selected for analysis was Tabarbour, located in Amman, Jordan. Tabarbour intersection is considered one of the most significant signalized intersections in Amman. The intersection currently suffers from the following problems: long queues, delays and excessive emissions. SYNCHRO microscopic simulation software was used for signal optimization of the current conventional intersection. VISSIM microscopic simulation software was used to analyze and compare the Superstreet design to the conventional design. It was found that the proposed Superstreet reduced the average delay per vehicle by up to 87% and reduced the maximum queue length by almost 97%. This resulted in improving the level of service from F to C. Finally, five year future traffic demand analysis was performed; it was found that the Superstreet design didn’t perform as expected under heavy traffic volume.


2020 ◽  
Vol 12 (8) ◽  
pp. 3432
Author(s):  
Zhen Yang ◽  
Xiaocan Chen ◽  
Dazhi Sun

Recently, with the discrepancy between increasing traffic demand and limited land resources, more and more expressways are choosing to use hard shoulders to expand into quasi-six-lane or quasi-eight-lane roads. Therefore, more emergency parking bays are used in place of traditional parking belts. However, there are no standards defining clear and unified specifications for the design of parking bays. This paper aimed to investigate the impact of emergency parking bays on expressway traffic operations with various traffic volumes and setting conditions. Based on the Monte Carlo method, VISSIM (Verkehr in Städten Simulation, a microscopic simulation software) simulation experiments were conducted using measured traffic operation data from one expressway in Zhejiang province. The probability of unsafe deceleration, lane-changing maneuvers and delay times were considered as the safety and efficiency indexes in this simulation study. The simulation results indicated that the emergency parking vehicle had an increasing impact on the following vehicle as the traffic volume increased. However, the impact pattern was found to be insensitive to the changing of the bay taper length. For low traffic volume, compared with the arrival vehicle, the departure vehicle had more impact on the traffic operation of the mainline. However, the impact of the arrival vehicle became more remarkable as the traffic volume increased. After parking, the waiting time for merging into the mainline was reduced as the volume decreased or as the bay taper increased. Furthermore, reductions caused by varying bay tapers were more significant under high volume conditions. Finally, this study suggests that parking bays are inapplicable when the occupancy of the road space exceeds 20% (about 3000 veh/h), because they would cause significant impact on the safety and efficiency of the expressway. The results of this paper are useful for the design and implementation of emergency parking bays.


2019 ◽  
Vol 9 (5) ◽  
pp. 968 ◽  
Author(s):  
Xiaomei Xia ◽  
Xiaodan Ma ◽  
Jin Wang

To alleviate traffic congestion in the city, an integrated waiting area is introduced to the signalized intersection in this paper. After the design idea and the typical form of the integrated waiting area is proposed, the control method at the signalized intersection is discussed. The coordination control process of the main and pre-signal at the signalized intersection with the integrated waiting area is analyzed and modeled. To assess the operational performance of the integrated waiting area at intersections, a microscopic traffic simulation software (VISSIM) is utilized to simulate intersections with and without integrated waiting areas. Key issues concerning signal timing plans are then discussed. With comparisons between the operation of intersections with and without integrated waiting areas, the implementation effect is quantified based on the statistical data of the simulation result. The results confirm the potential benefits of the integrated waiting areas at the signalized intersections and show that integrated waiting areas work best in heavy traffic demand.


2019 ◽  
Vol 49 (1) ◽  
pp. 66-73
Author(s):  
Ghayda Zawawa ◽  
Hana Naghawi

The main objective of this paper is to evaluate and compare the operational efficiency of a conventional signalized T-intersection with an unconventional Continues Green T-intersection under different congestion levels. The analysis was performed using Synchro.8 micro-simulation software. A total of 48 hypothetical scenarios, 24 scenarios for each design, were created by changing the approach volumes and turning percentages on the major / minor intersecting roadways to reflect different levels of congestion that may occur on any urban intersection. Total intersection delay, Level of Service, maximum queue length and volume-to-capacity ratio (v/c) were the measures of effectiveness used for comparison purposes. These performance measures were selected because they demonstrated the overall efficiency of the intersection design. The simulation results showed that the Continuous Green T-intersection operates the best under stable traffic conditions and that it is not an effective solution for signalized T-intersections under heavy traffic volume.


Author(s):  
Michael Hunter ◽  
Angshuman Guin ◽  
James Anderson ◽  
Sung Jun Park

As the result of changing traffic patterns, many conventional intersections and interchanges can no longer accommodate growing traffic volumes and heavy turning movements. In response, there are various innovative intersection and interchange designs proposed and implemented to better accommodate these changes, and the diverging diamond interchange (DDI) is one of these alternatives. While there is a significant amount of research on the relative performance of DDIs and conventional diamond interchanges (CDIs), a clear set of guidance on demand conditions under which a DDI is likely an operationally more efficient solution is not readily available. This effort conducts a sensitivity analysis of CDI and DDI operational performance under various interchange lane configurations, including the selected study area of the Jimmy Carter Boulevard and I-85 interchange in Norcross, Georgia, under varying traffic demands and turn-movement ratios. The sensitivity analysis explores the detailed conditions in which one interchange configuration provides superior performance over the other. The sensitivity analysis is structured into a two-step process with a critical lane volume (CLV) analysis as the first step, followed by a VISSIM microscopic simulation study as the second step. Overall, the study found that a CDI is likely to be the preferred option at locations with traffic volumes well below capacity and cross-street left-turn traffic proportions below 30% of the total cross-street demand, and a DDI is likely to be preferred at locations with traffic volumes near capacity and cross-street left-turn proportions exceeding 50% of the total cross-street demand.


2018 ◽  
Vol 2018 ◽  
pp. 1-14 ◽  
Author(s):  
Yun Bai ◽  
Jiajie Li ◽  
Tang Li ◽  
Lingling Yang ◽  
Chenxi Lyu

Prioritizing traffic signals for trams crossing intersections without stops can increase the service punctuality and travel speed of trams, but it may also increase the delays of other vehicles at intersections. This paper presents a model on coordinated control of traffic signals among successive intersections along the tramline, taking into account driving characteristics of trams and vehicles. The objective is maximizing the valid bandwidth of vehicle green wave to reduce vehicle delays, while the trams cross intersections without stops. Linear Interactive and General Optimizer (LINGO) is applied to solve the proposed model and VISSIM simulation software is adopted to assess the solutions attained by the proposed model and the previous TRAMBAND model. Case studies show that the solutions given by the proposed model facilitate trams to go through all intersections along the tramline without stops. In comparison with the TRAMBAND model, the proposed model reduces tram delay by 13.14 s/pcu and increases the throughput of vehicles at intersections by 4.45% and reduces vehicle delays by 2.22%. Extensive simulations have verified that the performance of the proposed model is stable under different tram headways, dwell time, and traffic volumes. It is also found that the tram headway must be multiple of traffic signal cycle time to completely realize green wave control of all trams at all intersections along the tramline.


Author(s):  
Aidin Massahi ◽  
Mohammed Hadi ◽  
Maria Adriana Cutillo ◽  
Yan Xiao

The effect of incidents on capacity is the most critical parameter in estimating the influence of incidents on network performance. The Highway Capacity Manual 2010 (HCM 2010) provides estimates of the drop in capacity resulting from incidents as a function of the number of blocked lanes and the total number of lanes in the freeway section. However, there is limited information on the effects of incidents on the capacity of urban streets. This study investigated the effects on capacity of the interaction between the drop in capacity below demand at a midblock urban street segment location and upstream and downstream of signalized intersection operations. A model was developed to estimate the drop in capacity at the incident location as a function of the number of blocked lanes, the distance from the downstream intersection, and the green time–to–cycle length (g:C) ratio of the downstream signal. A second model was developed to estimate the reduction in the upstream intersection capacity resulting from the drop in capacity at the midblock incident location as estimated by the first model. The second model estimated the drop in capacity of the upstream links feeding the incident locations as a function of incident duration time, the volume-to-capacity (V/C) ratio at the incident location, and distance from an upstream signalized intersection. The models were developed on the basis of data generated with the use of a microscopic simulation model calibrated by comparison with parameters suggested in HCM 2010 for incident and no-incident conditions and by comparison with field measurements.


2021 ◽  
Author(s):  
Swapneel R. Kodupuganti ◽  
Sonu Mathew ◽  
Srinivas S. Pulugurtha

The rapid growth in population and related demand for travel during the past few decades has had a catalytic effect on traffic congestion, air quality, and safety in many urban areas. Transportation managers and planners have planned for new facilities to cater to the needs of users of alternative modes of transportation (e.g., public transportation, walking, and bicycling) over the next decade. However, there are no widely accepted methods, nor there is enough evidence to justify whether such plans are instrumental in improving mobility of the transportation system. Therefore, this project researches the operational performance of urban roads with heterogeneous traffic conditions to improve the mobility and reliability of people and goods. A 4-mile stretch of the Blue Line light rail transit (LRT) extension, which connects Old Concord Rd and the University of North Carolina at Charlotte’s main campus on N Tryon St in Charlotte, North Carolina, was considered for travel time reliability analysis. The influence of crosswalks, sidewalks, trails, greenways, on-street bicycle lanes, bus/LRT routes and stops/stations, and street network characteristics on travel time reliability were comprehensively considered from a multimodal perspective. Likewise, a 2.5-mile-long section of the Blue Line LRT extension, which connects University City Blvd and Mallard Creek Church Rd on N Tryon St in Charlotte, North Carolina, was considered for simulation-based operational analysis. Vissim traffic simulation software was used to compute and compare delay, queue length, and maximum queue length at nine intersections to evaluate the influence of vehicles, LRT, pedestrians, and bicyclists, individually and/or combined. The statistical significance of variations in travel time reliability were particularly less in the case of links on N Tryon St with the Blue Line LRT extension. However, a decrease in travel time reliability on some links was observed on the parallel route (I-85) and cross-streets. While a decrease in vehicle delay on northbound and southbound approaches of N Tryon St was observed in most cases after the LRT is in operation, the cross-streets of N Tryon St incurred a relatively higher increase in delay after the LRT is in operation. The current pedestrian and bicycling activity levels seemed insignificant to have an influence on vehicle delay at intersections. The methodological approaches from this research can be used to assess the performance of a transportation facility and identify remedial solutions from a multimodal perspective.


Sign in / Sign up

Export Citation Format

Share Document