scholarly journals Development of Nanostructured-based Composites as Advanced Thermal Interface Materials

Thermal management is one of the most critical issues in electronics due to increasing power densities. This problem is getting even worse for small and sophisticated devices due to air gaps present between the heat source and heat sink. Thermal interface materials (TIM) are used to reduce the air gaps and significantly increase the heat transfer capability of the system. A high-thermal-performance, cost-effective and reliable TIM would be needed to dissipate the generated heat, which could enable significant reductions in weight, volume and cost of the thermal management system. In this study a number of different nanostructured materials are reviewed for potential use as a filler material in our effort to develop advanced TIM composite. Some of the candidate filler materials considered is Carbon Nanotubes, Graphene and Few Layer Graphene (FLG), Boron Nitride Nanotubes (BNNT) and Boron Nitride Nanomesh (BNNM) and Boron Arsenide (BAs). Objective is to identify composition of boron arsenide as filler in polymer-nanostructured material composite TIM for high heat flux applications. In order to design boron-arsenide-based TIM composite with enhanced effective thermal conductivity, a number of metallic and nonmetallic base-filler material composites are considered with varying filler fractions. Empirical mixture models based on effective medium theories (EMT) are evaluated for estimating effective conductivity of the two-component boron arsenide-filler composite TIM structure.

Author(s):  
Wei Yu ◽  
◽  
Changqing Liu ◽  
Lin Qiu ◽  
Ping Zhang ◽  
...  

2019 ◽  
Vol 12 ◽  
pp. 80-85 ◽  
Author(s):  
Chang Ping Feng ◽  
Lu Bai ◽  
Rui-Ying Bao ◽  
Shi-Wei Wang ◽  
Zhengying Liu ◽  
...  

2014 ◽  
Vol 1039 ◽  
pp. 438-445 ◽  
Author(s):  
Ming Zhu Wang ◽  
Xing Xing ◽  
Wei Yu

Graphene, a two-dimensional nanocarbon material with unique planar structure, has wide application prospects in the field of thermal management due to its excellent thermal conductive property. The test methods for thermal conductivity of graphene are described. Research progress in the application of graphene in the field of thermal management is reviewed. Especially, the application of graphene in nanofluids, thermal interface materials and thermal conductive composites is described in detail.


2019 ◽  
Vol 6 (1) ◽  
pp. 2 ◽  
Author(s):  
Barath Kanna Mahadevan ◽  
Sahar Naghibi ◽  
Fariborz Kargar ◽  
Alexander A. Balandin

Temperature rise in multi-junction solar cells reduces their efficiency and shortens their lifetime. We report the results of the feasibility study of passive thermal management of concentrated multi-junction solar cells with the non-curing graphene-enhanced thermal interface materials. Using an inexpensive, scalable technique, graphene and few-layer graphene fillers were incorporated in the non-curing mineral oil matrix, with the filler concentration of up to 40 wt% and applied as the thermal interface material between the solar cell and the heat sink. The performance parameters of the solar cells were tested using an industry-standard solar simulator with concentrated light illumination at 70× and 200× suns. It was found that the non-curing graphene-enhanced thermal interface material substantially reduces the temperature rise in the solar cell and improves its open-circuit voltage. The decrease in the maximum temperature rise enhances the solar cell performance compared to that with the commercial non-cured thermal interface material. The obtained results are important for the development of the thermal management technologies for the next generation of photovoltaic solar cells.


2016 ◽  
Vol 2016 (HiTEC) ◽  
pp. 000079-000086
Author(s):  
Tim Jensen ◽  
David L. Saums

Summary An important determinant of device reliability is operating temperature control. Maintaining a semiconductor device at or below the maximum rated junction temperature (Tj) is accomplished through careful thermal management design and selection of well-performing thermal interface materials (TIM) that minimize efficiency losses in packaging and between the semiconductor device package and a heat sink or liquid cold plate. Thermal management design is increasingly important in harsh operating environments, especially where higher operating temperatures are specified. Minimizing thermal resistances through each semiconductor package material stack and at the external case or package surface of the device are important aspects of maintaining operating temperatures within specified maximum values. In addition, certain semiconductor devices require an electrical path from the semiconductor case to an external component. Maximizing electrical performance of gallium nitride (GaN) RF semiconductors is critical to system performance, as a primary example. The on-going transition within RF and microwave systems from silicon to GaN devices has increased the need for thermal interface materials which offer both improved thermal performance and electrical conductivity. Additionally, GaN semiconductor die are typically smaller in footprint and, even with equivalent power dissipation values, therefore may operate with higher heat flux values that require greater attention to proper thermal solution design. To address such needs, recently-developed forms of metallic TIM preforms are available for integrated circuits, power semiconductors, and RF devices. Understanding how these materials may be tested and selected for specific application requirements is the subject of this discussion.


Sign in / Sign up

Export Citation Format

Share Document